1,469 research outputs found
Six Pillars of Social Policy: The State of Pensions and Health Care in Canada
William B.P. Robson, a co-author with David Slater of a series of papers on pension issues, has written an ambitious survey of the state of Canadian economic policy in the areas of pensions and health care. He argues that it is appropriate to tackle both issues in the same paper because they are both major spending programs strongly related to the life cycle of Canadians, and face challenges arising from the aging of the population. Robson notes that the pension debate uses the metaphor of three pillars to describe a comprehensive pension system: a safety net to guard against destitution in old age; a mandatory employment-related system to provide basic replacement income; and a voluntary system supported by provisions that reduce the double-taxation of saving. The main elements of public policy related to pensions in Canada cover these pillars. He recognizes that all three of the pillars cannot be directly applied to health care, but he argues that the three-pillar metaphor is still a fruitful perspective because it facilitates constructive responses to the pressures confronting Canada’s health system and illuminates interactions between the pension and health systems. Hence his title “six pillars of social policy”. Based on his examination of Canada’s pension and health-care systems, Robson makes a number of recommendations. First, he advocates more prefunding in both the pension and health areas to cover the future cost of the aging baby-boom cohort. Second, he recommends a gradual increase in the normal age of eligibility for pension benefits. Third, he recommends the creation of a second pillar, a mandatory contribution scheme in the health area as a way to avoid the development of a means-tested system that would exacerbate the disincentives to work and save. Fourth, he puts forward the idea of a new type of saving vehicle that provides tax-relief on distributions rather than on contributions so that Canadians can avoid the high marginal effective tax rates associated with means-tested programs.Health, Health Care, Health-care, Healthcare, Canada, Pensions, CPP, Retirement, Mandatory Contribution, Aging, Ageing
An optical-IR jet in 3C133
We report the discovery of a new optical-IR synchrotron jet in the radio
galaxy 3C133 from our HST/NICMOS snapshot survey. The jet and eastern hotspot
are well resolved, and visible at both optical and IR wavelengths. The IR jet
follows the morphology of the inner part of the radio jet, with three distinct
knots identified with features in the radio. The radio-IR SED's of the knots
are examined, along with those of two more distant hotspots at the eastern
extreme of the radio feature. The detected emission appears to be synchrotron,
with peaks in the NIR for all except one case, which exhibits a power-law
spectrum throughout.Comment: ApJ accepted. 14 pages, 6 figure
The Atacama Cosmology Telescope: Data Characterization and Map Making
We present a description of the data reduction and mapmaking pipeline used
for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The
data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from
2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours
of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours
of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2
hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were
devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial
equator. We discuss sources of statistical and systematic noise, calibration,
telescope pointing, and data selection. Out of 1260 survey hours and 1024
detectors per array, 816 hours and 593 effective detectors remain after data
selection for this frequency band, yielding a 38% survey efficiency. The total
sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in
the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units.
Atmospheric brightness fluctuations constitute the main contaminant in the data
and dominate the detector noise covariance at low frequencies in the TOD. The
maps were made by solving the least-squares problem using the Preconditioned
Conjugate Gradient method, incorporating the details of the detector and noise
correlations. Cross-correlation with WMAP sky maps, as well as analysis from
simulations, reveal that our maps are unbiased at multipoles ell > 300. This
paper accompanies the public release of the 148 GHz southern stripe maps from
2008. The techniques described here will be applied to future maps and data
releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape
Measurement of Jet Shapes in Photoproduction at HERA
The shape of jets produced in quasi-real photon-proton collisions at
centre-of-mass energies in the range GeV has been measured using the
hadronic energy flow. The measurement was done with the ZEUS detector at HERA.
Jets are identified using a cone algorithm in the plane with a
cone radius of one unit. Measured jet shapes both in inclusive jet and dijet
production with transverse energies GeV are presented. The jet
shape broadens as the jet pseudorapidity () increases and narrows
as increases. In dijet photoproduction, the jet shapes have been
measured separately for samples dominated by resolved and by direct processes.
Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct
processes describe well the measured jet shapes except for the inclusive
production of jets with high and low . The observed
broadening of the jet shape as increases is consistent with the
predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017
Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri
Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia
Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the
Development of an automated 3D high content cell screening platform for organoid phenotyping.
The use of organoid models in biomedical research has grown substantially since their inception. As they gain popularity among scientists seeking more complex and biologically relevant systems, there is a direct need to expand and clarify potential uses of such systems in diverse experimental contexts. Herein we outline a high-content screening (HCS) platform that allows researchers to screen drugs or other compounds against three-dimensional (3D) cell culture systems in a multi-well format (384-well). Furthermore, we compare the quality of robotic liquid handling with manual pipetting and characterize and contrast the phenotypic effects detected by confocal imaging and biochemical assays in response to drug treatment. We show that robotic liquid handling is more consistent and amendable to high throughput experimental designs when compared to manual pipetting due to improved precision and automated randomization capabilities. We also show that image-based techniques are more sensitive to detecting phenotypic changes within organoid cultures than traditional biochemical assays that evaluate cell viability, supporting their integration into organoid screening workflows. Finally, we highlight the enhanced capabilities of confocal imaging in this organoid screening platform as they relate to discerning organoid drug responses in single-well co-cultures of organoids derived from primary human biopsies and patient-derived xenograft (PDX) models. Altogether, this platform enables automated, imaging-based HCS of 3D cellular models in a non-destructive manner, opening the path to complementary analysis through integrated downstream methods
Measurement of the Diffractive Cross Section in Deep Inelastic Scattering using ZEUS 1994 Data
The DIS diffractive cross section, , has been measured in the mass range GeV for c.m. energies GeV and photon virtualities to 140 GeV. For fixed and , the diffractive cross section rises rapidly with , with corresponding to a -averaged pomeron trajectory of \bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst) which is larger than \bar{\alphapom} observed in hadron-hadron scattering. The dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function factorizes according to \xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2). They are also consistent with QCD based models which incorporate factorization breaking. The rise of \xpom F^{D(3)}_2 with decreasing \xpom and the weak dependence of on suggest a substantial contribution from partonic interactions
Measurement of the F2 structure function in deep inelastic ep scattering using 1994 data from the ZEUS detector at HERA
We present measurements of the structure function \Ft\ in e^+p scattering at HERA in the range 3.5\;\Gevsq < \qsd < 5000\;\Gevsq. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At \qsd < 35 \;\Gevsq the range in x now spans 6.3\cdot 10^{-5} < x < 0.08 providing overlap with measurements from fixed target experiments. At values of Q^2 above 1000 GeV^2 the x range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic urray, W
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
- …
