116 research outputs found
Recent Progress in Genetic Variants Associated with Cancer and their Implications in Diagnostics Development
Contribution of oncoproteomics to cancer biomarker discovery
Oncoproteomics is the study of proteins and their interactions in a cancer cell by proteomic technologies. Proteomic research first came to the fore with the introduction of two-dimensional gel electrophoresis. At the turn of the century, proteomics has been increasingly applied to cancer research with the wide-spread introduction of mass spectrometry and proteinchip. There is an intense interest in applying proteomics to foster an improved understanding of cancer pathogenesis, develop new tumor biomarkers for diagnosis, and early detection using proteomic portrait of samples. Oncoproteomics has the potential to revolutionize clinical practice, including cancer diagnosis and screening based on proteomic platforms as a complement to histopathology, individualized selection of therapeutic combinations that target the entire cancer-specific protein network, real-time assessment of therapeutic efficacy and toxicity, and rational modulation of therapy based on changes in the cancer protein network associated with prognosis and drug resistance. Besides, oncoproteomics is also applied to the discovery of new therapeutic targets and to the study of drug effects. In pace with the successful completion of the Human Genome Project, the wave of proteomics has raised the curtain on the postgenome era. The study of oncoproteomics provides mankind with a better understanding of neoplasia. In this article, the discovery of cancer biomarkers in recent years is reviewed. The challenges ahead and perspectives of oncoproteomics for biomarkers development are also addressed. With a wealth of information that can be applied to a broad spectrum of biomarker research projects, this review serves as a reference for biomarker researchers, scientists working in proteomics and bioinformatics, oncologists, pharmaceutical scientists, biochemists, biologists, and chemists
OncomiRs: the discovery and progress of microRNAs in cancers
microRNAs (miRNAs) are evolutionarily conserved, endogenous, small, noncoding RNA molecules of about 22 nucleotides in length that function as posttranscriptional gene regulators. They are deemed to play a crucial role in the initiation and progression of human cancer, and those with a role in cancer are designated as oncogenic miRNAs (oncomiRs). For example, miR-15 and miR-16 induce apoptosis by targeting Bcl2. miRNAs from the miR-17-92 cluster modulate tumor formation and function as oncogenes by influencing the translation of E2F1 mRNA. miR-21 modulates gemcitabine-induced apoptosis by phosphatase and tensin homolog deleted on chromosome 10-dependent activation of PI 3-kinase signaling. miR-34a acts as a suppressor of neuroblastoma tumorigenesis by targeting the mRNA encoding E2F3 and reducing E2F3 protein levels. The chromosomal translocations associating with human tumors disrupt the repression of High mobility group A2 by let-7 miRNA. In addition, the oncomiRs expression profiling of human malignancies has also identified a number of diagnostic and prognostic cancer signatures. This article introduces the roles of oncomiRs in neoplasm development, progression, diagnosis, prognostication, as well as their mechanism of actions on target mRNAs and the functional outcomes of their actions on mRNAs. The paper ends with a brief perspective to the future of oncomiRs
Proteomics and translational medicine: molecular biomarkers for cancer diagnosis, prognosis and prediction of therapy outcome
The international effort: building the bridge for Translational Medicine: Report of the 1st International Conference of Translational Medicine (ICTM)
Background: Supported by the International Society for Translational Medicine (ISTM), Wenzhou Medical College and the First Affiliated Hospital of Wenzhou Medical College, the International Conference on Translational Medicine (ICTM) was held on October 22–23, 2011 in Wenzhou, China. Nearly 800 registrants attended the meeting, primarily representing institutes and hospitals in Europe, The United States of America, And Asia, and China. The meeting was chaired and organized by Dr. Xiangdong Wang, Xiaoming Chen, Richard Coico, Jeffrey M. Drazen, Richard Horton, Francesco M. Marincola, Laurentiu M. Popescu, Jia Qu and Aamir Shahzad. Findings: The meeting focused on the communication of the need to foster translational medicine (TM) by building and broadening bridges between basic research and clinical studies at the international level. The meeting included distinguished TM experts from academia, the pharmaceutical and diagnostics industries, government agencies, regulators, and clinicians and provided the opportunity to identify shared interests and efforts for collaborative approaches utilizing cutting edge technologies, innovative approaches and novel therapeutic interventions. The meeting defined the concept of TM in its two-way operational scheme and emphasized the need for bed to bench efforts based directly on clinical observation. Conclusions: It was the meeting participants’ realization that the shared main goals of TM include breaking the separation between clinic practice and basic research, establishing positive feedback by understanding the basis of expected and unexpected clinical outcomes and accelerating basic research relevant to human suffering. The primary objectives of the meeting were two-fold: to accelerate the two-way translation by informing the participants representing the different disciplines about the state of art activities around TM approaches; and to identify areas that need to be supported by redirecting limited resources as well as identifying new sources of funding. This report summarizes key concepts presented during the meeting representing the state-of-art translational research and salient aspects of the ensuing discussions
Mapping the interactome of overexpressed RAF kinase inhibitor protein in a gastric cancer cell line
Abstract
Background
Gastric cancer (GC) is a threat to human health with increasing incidence and mortality worldwide. Down-regulation or absence of RAF kinase inhibitor protein (RKIP) was associated with the occurrence, differentiation, invasion, and metastasis of GC. This study aims to investigate the molecular mechanisms and biological functions of RKIP in the GC biology.
Methods
The fusion expression plasmid pcDNA3.1-RKIP-3xFLAG was transfected into SGC7901 cells, the RKIP fusion proteins were purified with anti-flag M2 magnetic beads, and the RKIP-interacting proteins were identified with tandem mass spectrometry (MS/MS), and were analyzed with bioinformatics tools. Western blot and co-immunoprecipitation were used to confirm the interaction complex.
Results
A total of 72 RKIP-interacting proteins were identified by MS/MS. Those proteins play roles in enzyme metabolism, molecular chaperoning, biological oxidation, cytoskeleton organization, signal transduction, and enzymolysis. Three RKIP-interaction protein network diagrams were constructed with Michigan Molecular Interactions, functional linage network, and Predictome analysis to address the molecular pathways of the functional activity of RKIP. The MS/MS-characterized components of the existing interaction complex (RKIP, HSP90, 14-3-3ϵ, and keratin 8) were confirmed by Western blot analysis and co-immunoprecipitation.
Conclusion
This study is the first discovery of the interaction of RKIP with HSP90, 14-3-3, and keratin. The present data would provide insight into the molecular mechanisms of how RKIP inhibits the occurrence and development of GC.
</jats:sec
Method for Quantitative Study of Airway Functional Microanatomy Using Micro-Optical Coherence Tomography
We demonstrate the use of a high resolution form of optical coherence tomography, termed micro-OCT (μOCT), for investigating the functional microanatomy of airway epithelia. μOCT captures several key parameters governing the function of the airway surface (airway surface liquid depth, periciliary liquid depth, ciliary function including beat frequency, and mucociliary transport rate) from the same series of images and without exogenous particles or labels, enabling non-invasive study of dynamic phenomena. Additionally, the high resolution of μOCT reveals distinguishable phases of the ciliary stroke pattern and glandular extrusion. Images and functional measurements from primary human bronchial epithelial cell cultures and excised tissue are presented and compared with measurements using existing gold standard methods. Active secretion from mucus glands in tissue, a key parameter of epithelial function, was also observed and quantified
Trees on networks: resolving statistical patterns of phylogenetic similarities among interacting proteins
<p>Abstract</p> <p>Background</p> <p>Phylogenies capture the evolutionary ancestry linking extant species. Correlations and similarities among a set of species are mediated by and need to be understood in terms of the phylogenic tree. In a similar way it has been argued that biological networks also induce correlations among sets of interacting genes or their protein products.</p> <p>Results</p> <p>We develop suitable statistical resampling schemes that can incorporate these two potential sources of correlation into a single inferential framework. To illustrate our approach we apply it to protein interaction data in yeast and investigate whether the phylogenetic trees of interacting proteins in a panel of yeast species are more similar than would be expected by chance.</p> <p>Conclusions</p> <p>While we find only negligible evidence for such increased levels of similarities, our statistical approach allows us to resolve the previously reported contradictory results on the levels of co-evolution induced by protein-protein interactions. We conclude with a discussion as to how we may employ the statistical framework developed here in further functional and evolutionary analyses of biological networks and systems.</p
Activation of Wnt Signaling by Chemically Induced Dimerization of LRP5 Disrupts Cellular Homeostasis
Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust β-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent β-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of β-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2Kb promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63+ cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion
- …
