5,423 research outputs found
Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides
The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures
A Deep \u3cem\u3eChandra\u3c/em\u3e ACIS Survey of M83
We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s–1. Despite M83\u27s relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs
A Deep \u3cem\u3eChandra\u3c/em\u3e ACIS Survey of M83
We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s–1. Despite M83\u27s relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs
Minimal Scalar Sector of 3-3-1 Models without Exotic Electric Charges
We study the minimal set of Higgs scalars, for models based on the local
gauge group which do not contain
particles with exotic electric charges. We show that only two Higgs
triplets are needed in order to properly break the symmetry. The exact
tree-level scalar mass matrices resulting from symmetry breaking are calculated
at the minimum of the most general scalar potential, and the gauge bosons are
obtained, together with their couplings to the physical scalar fields. We show
how the scalar sector introduced is enough to produce masses for fermions in a
particular model which is an subgroup. By using experimental results we
constrain the scale of new physics to be above 1.3 TeV.Comment: LaTeX, 22 pages, 1 figure include
The Distance to the Cygnus Loop from Hubble Space Telescope Imaging of the Primary Shock Front
We present a Hubble Space Telescope/WFPC2 narrow-band H-alpha image of a
region on the northeastern limb of the Cygnus Loop supernova remnant. This
location provides a detailed example of where the primary blast wave first
encounters the surrounding interstellar medium. The filament structure is seen
in exquisite detail in this image, which was obtained primarily as an EARLY
ACQuisition image for a follow-up spectroscopic program. We compare the HST
image to a digitized version of the POSS-I red plate to measure the proper
motion of this filament. By combining this value for the proper motion with
previous measurements of the shock velocity at this position we find that the
distance to the Cygnus Loop is 440 (+130, -100) pc, considerably smaller than
the canonical value of 770 pc. We briefly discuss the ramifications of this new
distance estimate for our understanding of this prototypical supernova remnant.Comment: 18 pages, 3 Figures (2 JPEG and one Postscript
The Far-Ultraviolet Spectrum and Short Timescale Variability of AM Herculis from Observations with the Hopkins Ultraviolet Telescope
Using the Hopkins Ultraviolet Telescope (HUT), we have obtained 850-1850
angstrom spectra of the magnetic cataclysmic variable star AM Her in the high
state. These observations provide high time resolution spectra of AM Her in the
FUV and sample much of the orbital period of the system. The spectra are not
well-modelled in terms of simple white dwarf (WD) atmospheres, especially at
wavelengths shortward of Lyman alpha. The continuum flux changes by a factor of
2 near the Lyman limit as a function of orbital phase; the peak fluxes are
observed near magnetic phase 0.6 when the accreting pole of the WD is most
clearly visible. The spectrum of the hotspot can be modelled in terms of a 100
000 K WD atmosphere covering 2% of the WD surface. The high time resolution of
the HUT data allows an analysis of the short term variability and shows the UV
luminosity to change by as much as 50% on timescales as short as 10 s. This
rapid variability is shown to be inconsistent with the clumpy accretion model
proposed to account for the soft X-ray excess in polars. We see an increase in
narrow line emission during these flares when the heated face of the secondary
is in view. The He II narrow line flux is partially eclipsed at secondary
conjunction, implying that the inclination of the system is greater than 45
degrees. We also present results from models of the heated face of the
secondary. These models show that reprocessing on the face of the secondary
star of X-ray/EUV emission from the accretion region near the WD can account
for the intensities and kinematics of most of the narrow line components
observed.Comment: 19 pp., 12 fig., 3 tbl. To appear in The Astrophysical Journal. Also
available at http://greeley.pha.jhu.edu/papers/amherpp.ps.g
Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model
A detailed study of the criteria for stability of the scalar potential and
the proper electroweak symmetry breaking pattern in the economical 3-3-1 model,
is presented. For the analysis we use, and improve, a method previously
developed to study the scalar potential in the two-Higgs-doublet extension of
the standard model. A new theorem related to the stability of the potential is
stated. As a consequence of this study, the consistency of the economical 3-3-1
model emerges.Comment: to be published in EPJ C, 13 page
A Deep XMM-Newton Survey of M33: Point Source Catalog, Source Detection and Characterization of Overlapping Fields
We have obtained a deep 8-field XMM-Newton mosaic of M33 covering the galaxy
out to the D isophote and beyond to a limiting 0.2--4.5 keV unabsorbed
flux of 510 erg cm s (L410
erg s at the distance of M33). These data allow complete coverage of the
galaxy with high sensitivity to soft sources such as diffuse hot gas and
supernova remnants. Here we describe the methods we used to identify and
characterize 1296 point sources in the 8 fields. We compare our resulting
source catalog to the literature, note variable sources, construct hardness
ratios, classify soft sources, analyze the source density profile, and measure
the X-ray luminosity function. As a result of the large effective area of
XMM-Newton below 1 keV, the survey contains many new soft X-ray sources. The
radial source density profile and X-ray luminosity function for the sources
suggests that only 15% of the 391 bright sources with
L3.610 erg s are likely to be associated with M33,
and more than a third of these are known supernova remnants. The log(N)--log(S)
distribution, when corrected for background contamination, is a relatively flat
power-law with a differential index of 1.5, which suggests many of the other
M33 sources may be high-mass X-ray binaries. Finally, we note the discovery of
an interesting new transient X-ray source, which we are unable to classify.Comment: 26 pages, 6 tables, 13 figures, accepted for publication in ApJ
- …
