127,352 research outputs found
User's guide for CCT2WA (converting CCT's to work-addressable file)
The CCT2WA program, developed to convert the shuttle post-flight computer compatible tape data to a word addressable mass storage file, is described. The use of utility processors that can be used to copy word addressable files from mass storage to mass storage is also described
Antiferromagnetism in NiO Observed by Transmission Electron Diffraction
Neutron diffraction has been used to investigate antiferromagnetism since
1949. Here we show that antiferromagnetic reflections can also be seen in
transmission electron diffraction patterns from NiO. The diffraction patterns
taken here came from regions as small as 10.5 nm and such patterns could be
used to form an image of the antiferromagnetic structure with a nanometre
resolution.Comment: 10 pages, 7 figures. Typos corrected. To appear in Physical Review
Letter
Scaling Behavior of the Landau Gauge Overlap Quark Propagator
The properties of the momentum space quark propagator in Landau gauge are
examined for the overlap quark action in quenched lattice QCD. Numerical
calculations are done on three lattices with different lattice spacings and
similar physical volumes to explore the approach of the quark propagator
towards the continuum limit. We have calculated the nonperturbative
momentum-dependent wavefunction renormalization function and the
nonperturbative mass function for a variety of bare quark masses and
extrapolate to the chiral limit.
We find the behavior of and are in good agreement for the
two finer lattices in the chiral limit. The quark condensate is also
calculated.Comment: 3 pages, Lattice2003(Chiral fermions
Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter
We investigate the possibility and consequences of phase transitions from an
equation of state (EOS) describing nucleons and hyperons interacting via mean
fields of sigma, omega, and rho mesons in the recently improved quark-meson
coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag.
The transition to a mixed phase of baryons and deconfined quarks, and
subsequently to a pure deconfined quark phase, is described using the method of
Glendenning. The overall EOS for the three phases is calculated for various
scenarios and used to calculate stellar solutions using the
Tolman-Oppenheimer-Volkoff equations. The results are compared with recent
experimental data, and the validity of each case is discussed with consequences
for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte
Comparing SU(2) to SU(3) gluodynamics on large lattices
We study the SU(2) gluon and ghost propagators in Landau gauge on lattices up
to a size of 112^4. A comparison with the SU(3) case is made and finite-volume
effects are then investigated. We find that for a large range of momenta the
SU(2) and SU(3) propagators are remarkably alike. In the low-momentum region we
compare with recent results obtained in DSE studies on a 4-torus.Comment: 7 pages, 5 figures, poster presented at the XXV International
Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg,
German
Kinetic Monte Carlo simulations inspired by epitaxial graphene growth
Graphene, a flat monolayer of carbon atoms packed tightly into a two
dimensional hexagonal lattice, has unusual electronic properties which have
many promising nanoelectronic applications. Recent Low Energy Electron
Microscopy (LEEM) experiments show that the step edge velocity of epitaxially
grown 2D graphene islands on Ru(0001) varies with the fifth power of the
supersaturation of carbon adatoms. This suggests that graphene islands grow by
the addition of clusters of five atoms rather than by the usual mechanism of
single adatom attachment.
We have carried out Kinetic Monte Carlo (KMC) simulations in order to further
investigate the general scenario of epitaxial growth by the attachment of
mobile clusters of atoms. We did not seek to directly replicate the Gr/Ru(0001)
system but instead considered a model involving mobile tetramers of atoms on a
square lattice. Our results show that the energy barrier for tetramer break up
and the number of tetramers that must collide in order to nucleate an immobile
island are the important parameters for determining whether, as in the
Gr/Ru(0001) system, the adatom density at the onset of island nucleation is an
increasing function of temperature. A relatively large energy barrier for
adatom attachment to islands is required in order for our model to produce an
equilibrium adatom density that is a large fraction of the nucleation density.
A large energy barrier for tetramer attachment to islands is also needed for
the island density to dramatically decrease with increasing temperature. We
show that islands grow with a velocity that varies with the fourth power of the
supersaturation of adatoms when tetramer attachment is the dominant process for
island growth
- …
