14 research outputs found
Cerebral small vessel disease and perihematomal edema formation in spontaneous intracerebral hemorrhage
ObjectiveBlood-brain barrier (BBB) dysfunction is implicated in the pathophysiology of cerebral small vessel disease (cSVD)-related intracerebral hemorrhage (ICH). The formation of perihematomal edema (PHE) is presumed to reflect acute BBB permeability following ICH. We aimed to assess the association between cSVD burden and PHE formation in patients with spontaneous ICH.MethodsWe selected patients with spontaneous ICH who underwent 3T MRI imaging within 21 days after symptom onset from a prospective observational multicenter cohort study. We rated markers of cSVD (white matter hyperintensities, enlarged perivascular spaces, lacunes and cerebral microbleeds) and calculated the composite score as a measure of the total cSVD burden. Perihematomal edema formation was measured using the edema extension distance (EED). We assessed the association between the cSVD burden and the EED using a multivariable linear regression model adjusting for age, (log-transformed) ICH volume, ICH location (lobar vs. non-lobar), and interval between symptom onset and MRI.ResultsWe included 85 patients (mean age 63.5 years, 75.3% male). Median interval between symptom onset and MRI imaging was 6 days (IQR 1–19). Median ICH volume was 17.0 mL (IQR 1.4–88.6), and mean EED was 0.54 cm (SD 0.17). We found no association between the total cSVD burden and EED (B = −0.003, 95% CI −0.003–0.03, p = 0.83), nor for any of the individual radiological cSVD markers.ConclusionWe found no association between the cSVD burden and PHE formation. This implies that mechanisms other than BBB dysfunction are involved in the pathophysiology of PHE
Cortical microinfarcts on 7 T MRI in patients with spontaneous intracerebral hemorrhage
[corrigendum
Multivariable hazard ratio’s for risk factors for intracerebral hemorrhage in general, lobar and non-lobar hemorrhage.
<p>The number of patients included in the analyses varied from 8,453 to 11,643 in the combined cohort and from 7,232 to 8,953 in the SMART cohort. Abbreviations: SMART, Second Manifestations of ARTerial disease study; ESPRIT, European/Australasian Stroke Prevention in Reversible Ischaemia Trial; ICH, intracerebral hemorrhage; aHR, adjusted Hazard Ratio; SBP, systolic blood pressure; eGFR, estimated glomerular filtration rate; I, index event; A, age; P, antiplatelet medication; C, anticoagulant medication; G, sex; S, systolic blood pressure.</p><p>Multivariable hazard ratio’s for risk factors for intracerebral hemorrhage in general, lobar and non-lobar hemorrhage.</p
Risk Factors for Lobar and Non-Lobar Intracerebral Hemorrhage in Patients with Vascular Disease
<div><p>Introduction</p><p>Lobar and non-lobar non-traumatic intracerebral hemorrhage (ICH) are presumably caused by different types of small vessel diseases. The aim of this study was to assess risk factors for ICH according to location.</p><p>Methods</p><p>In two large prospective studies, SMART (n = 9088) and ESPRIT (n = 2625), including patients with manifest cardiovascular, cerebrovascular or peripheral artery disease or with vascular risk factors, we investigated potential risk factors for ICH during follow-up according to lobar or non-lobar location by Cox proportional hazards analyses.</p><p>Results</p><p>During 65,156 patient years of follow up 19 patients had lobar ICH (incidence rate 29, 95% CI 19–42 per 100,000 person-years) and 24 non-lobar ICH (incidence rate 37, 95% CI 26–51 per 100,000 person-years). Age significantly increased the risk of lobar ICH (HR per 10 years increase 1.90; 95% CI 1.17–3.10) in the multivariable analysis, but not of non-lobar hemorrhage. Anticoagulant medication (HR 3.49; 95% CI 1.20–10.2) and male sex (HR 3.79; 95% CI 1.13–12.8) increased the risk of non-lobar but not lobar ICH.</p><p>Conclusion</p><p>This study shows an elevated risk of future ICH in patients with manifestations of, or risk factors for, cardiovascular, cerebrovascular or peripheral artery disease. Our data suggest that risk factors for ICH vary according to location, supporting the hypothesis of a differential pathophysiology of lobar and non-lobar ICH.</p></div
Baseline characteristics of patients.
<p>For the combined cohort, data were missing in 0.2% of patients or less, except for hyperlipidemia (1.4%). For the SMART cohort data were missing for impaired renal function (0.8%), hyperhomocysteinemia (7.1%), alcohol use (0.7%) and statins in 27.2% of patients. Abbreviations: SMART, Second Manifestations of ARTerial disease study; ESPRIT, European/Australasian Stroke Prevention in Reversible Ischaemia Trial; SD, standard deviation; HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR, estimated glomerular filtration rate; hsCRP, high-sensitivity C-reactive protein.</p><p>Baseline characteristics of patients.</p
Differences in cerebral small vessel disease magnetic resonance imaging markers between lacunar stroke and non Lobar intracerebral hemorrhage
Introduction: It is unclear why cerebral small vessel disease (SVD) leads to lacunar stroke in some and to non-lobar intracerebral hemorrhage (ICH) in others. We investigated differences in MRI markers of SVD in patients with lacunar stroke or non-lobar ICH. Patients and methods: We included patients from two prospective cohort studies with either lacunar stroke (RUN DMC) or non-lobar ICH (FETCH). Differences in SVD markers (white matter hyperintensities [WMH], lacunes, cerebral microbleeds [CMB]) between groups were investigated with univariable tests;multivariable logistic regression analysis, adjusted for age, sex, and vascular risk factors;spatial correlation analysis and voxel-wise lesion symptom mapping. Results: We included 82 patients with lacunar stroke (median age 63, IQR 57-72) and 54 with non-lobar ICH (66, 59-75). WMH volumes and distribution were not different between groups. Lacunes were more frequent in patients with a lacunar stroke (44% vs. 17%, adjusted odds ratio [aOR] 5.69, 95% CI [1.66-22.75]) compared to patients with a non-lobar ICH. CMB were more frequent in patients with a non-lobar ICH (71% vs. 23%, aOR for lacunar stroke vs non-lobar ICH 0.08 95% CI [0.02-0.26]), and more often located in non-lobar regions compared to CMB in lacunar stroke. Discussion: Although we obserd different types of MRI markers of SVD within the same patient, ischemic markers of SVD were more frequent in the ischemic type of lacunar stroke, and hemorrhagic markers were more prevalent in the hemorrhagic phenotype of non-lobar ICH. Conclusion: There are differences between MRI markers of SVD between patients with a lacunar stroke and those with a non-lobar ICH
Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral Hemorrhage
Abstract
In patients with spontaneous intracerebral hemorrhage caused by different vasculopathies, cerebral microinfarcts have the same aspect on MRI and the same applies to cerebral microbleeds. It is unclear what pathological changes underlie these cerebral microinfarcts and cerebral microbleeds. In the current study, we explored the histopathological substrate of these lesions by investigating the brain tissue of 20 patients (median age at death 77 years) who died from ICH (9 lobar, 11 non-lobar) with a combination of post-mortem 7-T MRI and histopathological analysis. We identified 132 CMIs and 204 CMBs in 15 patients on MRI, with higher numbers of CMIs in lobar ICH patients and similar numbers of CMBs. On histopathology, CMIs and CMBs were in lobar ICH more often located in the superficial than in the deep layers of the cortex, and in non-lobar ICH more often in the deeper layers. We found a tendency towards more severe CAA scores in lobar ICH patients. Other histopathological characteristics were comparable between lobar and non-lobar ICH patients. Although CMIs and CMBs were found in different segments of the cortex in lobar ICH compared to non-lobar ICH patients, otherwise similar histopathological features of cortical CMIs and CMBs distant from the ICH suggest shared pathophysiological mechanisms in lobar and non-lobar ICH caused by different vasculopathies.</jats:p
Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage
AbstractCerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid β (Aβ) protein in the cerebral vasculature and poses a major risk factor for the development of intracerebral haemorrhages (ICH). However, only a minority of patients with CAA develops ICH (CAA-ICH), and to date it is unclear which mechanisms determine why some patients with CAA are more susceptible to haemorrhage than others. We hypothesized that an imbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) contributes to vessel wall weakening. MMP9 plays a role in the degradation of various components of the extracellular matrix as well as of Aβ and increased MMP9 expression has been previously associated with CAA. TIMP3 is an inhibitor of MMP9 and increased TIMP3 expression in cerebral vessels has also been associated with CAA. In this study, we investigated the expression of MMP9 and TIMP3 in occipital brain tissue of CAA-ICH cases (n = 11) by immunohistochemistry and compared this to the expression in brain tissue of CAA cases without ICH (CAA-non-haemorrhagic, CAA-NH, n = 18). We showed that MMP9 expression is increased in CAA-ICH cases compared to CAA-NH cases. Furthermore, we showed that TIMP3 expression is increased in CAA cases compared to controls without CAA, and that TIMP3 expression is reduced in a subset of CAA-ICH cases compared to CAA-NH cases. In conclusion, in patients with CAA, a disbalance in cerebrovascular MMP9 and TIMP3 expression is associated with CAA-related ICH.</jats:p
Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral Hemorrhage
In patients with spontaneous intracerebral hemorrhage caused by different vasculopathies, cerebral microinfarcts have the same aspect on MRI and the same applies to cerebral microbleeds. It is unclear what pathological changes underlie these cerebral microinfarcts and cerebral microbleeds. In the current study, we explored the histopathological substrate of these lesions by investigating the brain tissue of 20 patients (median age at death 77 years) who died from ICH (9 lobar, 11 non-lobar) with a combination of post-mortem 7-T MRI and histopathological analysis. We identified 132 CMIs and 204 CMBs in 15 patients on MRI, with higher numbers of CMIs in lobar ICH patients and similar numbers of CMBs. On histopathology, CMIs and CMBs were in lobar ICH more often located in the superficial than in the deep layers of the cortex, and in non-lobar ICH more often in the deeper layers. We found a tendency towards more severe CAA scores in lobar ICH patients. Other histopathological characteristics were comparable between lobar and non-lobar ICH patients. Although CMIs and CMBs were found in different segments of the cortex in lobar ICH compared to non-lobar ICH patients, otherwise similar histopathological features of cortical CMIs and CMBs distant from the ICH suggest shared pathophysiological mechanisms in lobar and non-lobar ICH caused by different vasculopathies
Image_1_Cerebral small vessel disease and perihematomal edema formation in spontaneous intracerebral hemorrhage.PDF
ObjectiveBlood-brain barrier (BBB) dysfunction is implicated in the pathophysiology of cerebral small vessel disease (cSVD)-related intracerebral hemorrhage (ICH). The formation of perihematomal edema (PHE) is presumed to reflect acute BBB permeability following ICH. We aimed to assess the association between cSVD burden and PHE formation in patients with spontaneous ICH.MethodsWe selected patients with spontaneous ICH who underwent 3T MRI imaging within 21 days after symptom onset from a prospective observational multicenter cohort study. We rated markers of cSVD (white matter hyperintensities, enlarged perivascular spaces, lacunes and cerebral microbleeds) and calculated the composite score as a measure of the total cSVD burden. Perihematomal edema formation was measured using the edema extension distance (EED). We assessed the association between the cSVD burden and the EED using a multivariable linear regression model adjusting for age, (log-transformed) ICH volume, ICH location (lobar vs. non-lobar), and interval between symptom onset and MRI.ResultsWe included 85 patients (mean age 63.5 years, 75.3% male). Median interval between symptom onset and MRI imaging was 6 days (IQR 1–19). Median ICH volume was 17.0 mL (IQR 1.4–88.6), and mean EED was 0.54 cm (SD 0.17). We found no association between the total cSVD burden and EED (B = −0.003, 95% CI −0.003–0.03, p = 0.83), nor for any of the individual radiological cSVD markers.ConclusionWe found no association between the cSVD burden and PHE formation. This implies that mechanisms other than BBB dysfunction are involved in the pathophysiology of PHE.</p
