697 research outputs found
Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties
A disagreement between two determinations of Gamma_alpha of the astro-
physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent
papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties
of both papers are discussed in detail, and we adopt the value
Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition,
the validity and the uncertainties of the usual approximations for mirror
nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx
theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on
the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.
binny:an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets
Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne
The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the
hot CNO cycles into the rp process in accreting neutron stars. Its
astrophysical rate depends critically on the decay properties of excited states
in 19Ne lying just above the 15O + alpha threshold. We have measured the
alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction
at 43 MeV/u. Combining our measurements with previous determinations of the
radiative widths of these states, we conclude that no significant breakout from
the hot CNO cycle into the rp process in novae is possible via
15O(alpha,gamma)19Ne, assuming current models accurately represent their
temperature and density conditions
binny:an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets
Meta-omics approaches to understand and improve wastewater treatment systems
Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the
Spanish Ministry of Education and Science (Contract Project
CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and
the Regional Government of Castilla y Leon (Ref. VA038A07).
Research of AJMS is supported by the European Research
Council (Grant 323009
Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein–protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.</p
The microbiome-gut-brain axis in acute and chronic brain diseases
The gut microbiome — the largest reservoir of microorganisms of the human body — is emerging as an important player in neurodevelopment and ageing as well as in brain diseases including stroke, Alzheimer’s disease and Parkinson’s disease. The growing knowledge on mediators and triggered pathways has advanced our understanding of the interactions along the gut-brain axis. Gut bacteria produce neuroactive compounds and can modulate neuronal function, plasticity and behavior. Furthermore, intestinal microorganisms impact the host’s metabolism and immune status which in turn affect neuronal pathways in the enteric and central nervous systems. Here, we discuss the recent insights from human studies and animal models on the bi-directional communication along the microbiome-gut-brain axis in both acute and chronic brain diseases
Microgravimetric measurements at the 1994 international comparison of absolute gravimeters
International audienc
Sample preservation and storage significantly impact taxonomic and functional profiles in metaproteomics studies of the human gut microbiome
With the technological advances of the last decade, it is now feasible to analyze microbiome samples, such as human stool specimens, using multi-omic techniques. Given the inherent sample complexity, there exists a need for sample methods which preserve as much information as possible about the biological system at the time of sampling. Here, we analyzed human stool samples preserved and stored using different methods, applying metagenomics as well as metaproteomics. Our results demonstrate that sample preservation and storage have a significant effect on the taxonomic composition of identified proteins. The overall identification rates, as well as the proportion of proteins from were much higher when samples were flash frozen. Preservation in RNAlater overall led to fewer protein identifications and a considerable increase in the share of , as well as . Additionally, a decrease in the share of metabolism-related proteins and an increase of the relative amount of proteins involved in the processing of genetic information was observed for RNAlater-stored samples. This suggests that great care should be taken in choosing methods for the preservation and storage of microbiome samples, as well as in comparing the results of analyses using different sampling and storage methods. Flash freezing and subsequent storage at -80 °C should be chosen wherever possible
- …
