8,213 research outputs found
Recommended from our members
Response of rat tracheal epithelium to ozone and oxygen exposure in vitro.
Although ozone-induced epithelial injury in vivo has been morphologically characterized, effects of gaseous oxidants on respiratory epithelium in organ culture, where tissue organization is maintained but systemic influences are eliminated, have not been thoroughly investigated. In this study, we exposed tracheal organ cultures from rats to 95% oxygen and 1 ppm ozone, alone and in combination, to determine (1) whether epithelial responses to ozone similar to those observed in vivo occur in airways separated from systemic physiologic, secretory, and inflammatory reactions; (2) whether concentrations of oxygen sufficient to potentially cause oxidant injury result in morphologic epithelial alterations similar to those that occur in ozone toxicity; and (3) if the combined oxidant insult of oxygen and ozone results in more severe damage to the tracheal epithelium than occurs with ozone in air. Tracheal organ cultures were exposed to filtered air and 5% carbon dioxide; filtered air, 5% carbon dioxide, and 1 ppm ozone; 95% oxygen and 5% carbon dioxide; or 95% oxygen, 5% carbon dioxide, and 1 ppm ozone for 96 hr. Light- and quantitative electron-microscopic evaluation showed that epithelia exposed to 1 ppm ozone in air exhibited loss of ciliated cells and ciliated cell damage. The epithelia exposed to 95% oxygen and 5% carbon dioxide were pseudostratified, columnar, ciliated, and hyperplastic. Epithelia exposed to 95% oxygen plus 1 ppm ozone were stratified and nonciliated or very sparsely ciliated. The predominant cell types in epithelia exposed to oxygen plus ozone were serous cells and metaplastic cells, and focal aggregates of adherent necrotic cells were present. We conclude that there was a synergism between oxygen and ozone exposure leading to enhanced epithelial injury and metaplasia
Recommended from our members
In vitro evidence of cellular adaptation to ozone toxicity in the rat trachea.
Adaptation to prolonged ozone (O3) exposure occurs in the tracheal epithelium of rats and is marked by the presence of ciliated cells with uniform short cilia but is not accompanied by shifts in cell populations, altered characteristics of epithelial secretory cell products, increased cell turnover, or elevated tracheal superoxide dismutase activity. The purpose of this study was to test the hypothesis that adaptation is a result of alterations intrinsic to epithelial cells or to the cells and their matrix, and not due to systemic or neural influences. Rats were preexposed to either filtered air (FA) or 0.96 ppm O3 for 8 hr/night for 60 days, and then their tracheae were removed and exposed to 3 ppm O3 in an explant culture system where behavioral, nasal, exudative, and secretory product influences can be eliminated. After exposure to 3 ppm O3 in vitro, quantitative electron microscopic evaluation demonstrated that the epithelia from the FA preexposure group had significantly more necrotic cells and sloughed cells and fewer ciliated cells than the epithelia from the O3 preexposure group. Thus previous exposure to ozone in vivo induces a change in tracheal epithelium which confers resistance to ozone-induced injury in the explant exposure system
Plasma Vascular Endothelial Growth Factor Concentration and Alveolar Nitric Oxide as Potential Predictors of Disease Progression and Mortality in Idiopathic Pulmonary Fibrosis.
BACKGROUND: Declining lung function signifies disease progression in idiopathic pulmonary fibrosis (IPF). Vascular endothelial growth factor (VEGF) concentration is associated with declining lung function in 6 and 12-month studies. Alveolar nitric oxide concentration (CANO) is increased in patients with IPF, however its significance is unclear. This study investigated whether baseline plasma VEGF concentration and CANO are associated with disease progression or mortality in IPF. METHODS: 27 IPF patients were studied (maximum follow-up 65 months). Baseline plasma VEGF concentration, CANO and pulmonary function tests (PFTs) were measured. PFTs were performed the preceding year and subsequent PFTs and data regarding mortality were collected. Disease progression was defined as one of: death, relative decrease of ≥10% in baseline forced vital capacity (FVC) % predicted, or relative decrease of ≥15% in baseline single breath diffusion capacity of carbon monoxide (TLCO-SB) % predicted. RESULTS: Plasma VEGF concentration was not associated with progression-free survival or mortality. There was a trend towards shorter time to disease progression and death with higher CANO. CANO was significantly higher in patients with previous declining versus stable lung function. CONCLUSION: The role of VEGF in IPF remains uncertain. It may be of value to further investigate CANO in IPF. KEYWORDS: alveolar nitric oxide; idiopathic pulmonary fibrosis; vascular endothelial growth facto
Environmental coupling of selection and heritability limits evolution
There has recently been great interest in applying theoretical quantitative genetic models to empirical studies of evolution in wild populations. However, while classical models assume environmental constancy, most natural populations exist in variable environments. Here, we applied a novel analytical technique to a long-term study of birthweight in wild sheep and examined, for the first time, how variation in environmental quality simultaneously influences the strength of natural selection and the genetic basis of trait variability. In addition to demonstrating that selection and genetic variance vary dramatically across environments, our results show that environmental heterogeneity induces a negative correlation between these two parameters. Harsh environmental conditions were associated with strong selection for increased birthweight but low genetic variance, and vice versa. Consequently, the potential for microevolution in this population is constrained by either a lack of heritable variation ( in poor environments) or by a reduced strength of selection ( in good environments). More generally, environmental dependence of this nature may act to limit rates of evolution, maintain genetic variance, and favour phenotypic stasis in many natural systems. Assumptions of environmental constancy are likely to be violated in natural systems, and failure to acknowledge this may generate highly misleading expectations for phenotypic microevolution
Adjunctive treatment with oral AKL1, a botanical nutraceutical, in chronic obstructive pulmonary disease
Purpose: The objective of this pilot trial was to evaluate the safety and efficacy of AKL1, a patented botanical formulation containing extracts of Picrorhiza kurroa, Ginkgo biloba, and Zingiber officinale, as add-on therapy for patients with chronic obstructive pulmonary disease (COPD) and chronic cough.
Patients and methods: This randomized, double-blind, placebo-controlled trial enrolled male and female patients .18 years old with COPD and Leicester Cough Questionnaire (LCQ) score of ,18. The 10-week study period comprised a 2-week single-blind placebo run-in period followed by add-on treatment with AKL1 or placebo twice daily for 8 weeks. The primary study endpoint was the change from week 0 to week 8 in cough-related health status, as assessed by the LCQ.
Results: Of 33 patients enrolled, 20 were randomized to AKL1 and 13 to placebo. Patients included 19 (58%) men and 14 (42%) women of mean (standard deviation [SD]) age of 67 (9.4) years; 15 (45%) patients were smokers and 16 (49%) were ex-smokers. The mean (SD) change from baseline in LCQ score at 8 weeks was 2.3 (4.9) in the AKL1 group and 0.6 (3.7) in the placebo group, with mean difference in change of 1.8 (95% confidence interval: -1.5 to 5.1; P=0.28). The St George’s Respiratory Questionnaire score improved substantially in the AKL1 treatment group by a mean (SD) of -7.7 (11.7) versus worsening in the placebo group (+1.5 [9.3]), with mean difference in change of -9.2 (95% confidence interval: -19.0 to 0.6; P=0.064). There were no significant differences between treatment groups in change from baseline to week 8 in other patient-reported measures, lung function, or the 6-minute walk distance.
Conclusion: Further study is needed with a larger patient population and over a longer duration to better assess the effects of add-on therapy with AKL1 in COPD
A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.
Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster
Gate-controlled Guiding of Electrons in Graphene
Ballistic semiconductor structures have allowed the realization of
optics-like phenomena in electronics, including magnetic focusing and lensing.
An extension that appears unique to graphene is to use both n and p carrier
types to create electronic analogs of optical devices having both positive and
negative indices of refraction. Here, we use gate-controlled density with both
p and n carrier types to demonstrate the analog of the fiber-optic guiding in
graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding,
based on the principle of angle-selective transmission though the graphene p-n
interface, and (2) unipolar fiber-optic guiding, using total internal
reflection controlled by carrier density. Modulation of guiding efficiency
through gating is demonstrated and compared to numerical simulations, which
indicates that interface roughness limits guiding performance, with
few-nanometer effective roughness extracted. The development of p-n and
fiber-optic guiding in graphene may lead to electrically reconfigurable wiring
in high-mobility devices.Comment: supplementary materal at
http://marcuslab.harvard.edu/papers/OG_SI.pd
Identification of animal movement patterns using tri-axial magnetometry
BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry
Microwave amplification with nanomechanical resonators
Sensitive measurement of electrical signals is at the heart of modern science
and technology. According to quantum mechanics, any detector or amplifier is
required to add a certain amount of noise to the signal, equaling at best the
energy of quantum fluctuations. The quantum limit of added noise has nearly
been reached with superconducting devices which take advantage of
nonlinearities in Josephson junctions. Here, we introduce a new paradigm of
amplification of microwave signals with the help of a mechanical oscillator. By
relying on the radiation pressure force on a nanomechanical resonator, we
provide an experimental demonstration and an analytical description of how the
injection of microwaves induces coherent stimulated emission and signal
amplification. This scheme, based on two linear oscillators, has the advantage
of being conceptually and practically simpler than the Josephson junction
devices, and, at the same time, has a high potential to reach quantum limited
operation. With a measured signal amplification of 25 decibels and the addition
of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave
amplification is feasible in various applications involving integrated
electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main
text), 18 pages, 6 figures (supplementary information
Role of domain walls in the abnormal photovoltaic effect in BiFeO3
Recently, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin
films, which resulted in open circuit voltages (V-oc) considerably
larger than the band gap of the material, has generated a revival of the
entire field of photoferroelectrics. Here, via temperature-dependent PV
studies, we prove that the bulk photovoltaic (BPV) effect, which has
been studied in the past for many non-centrosymmetric materials, is at
the origin of the anomalous PV effect in BFO films. Moreover, we show
that irrespective of the measurement geometry, V-oc as high as 50V can
be achieved by controlling the conductivity of domain walls (DW). We
also show that photoconductivity of the DW is markedly higher than in
the bulk of BFO
- …
