6,718 research outputs found
Collective fields in the functional renormalization group for fermions, Ward identities, and the exact solution of the Tomonaga-Luttinger model
We develop a new formulation of the functional renormalization group (RG) for
interacting fermions. Our approach unifies the purely fermionic formulation
based on the Grassmannian functional integral, which has been used in recent
years by many authors, with the traditional Wilsonian RG approach to quantum
systems pioneered by Hertz [Phys. Rev. B 14, 1165 (1976)], which attempts to
describe the infrared behavior of the system in terms of an effective bosonic
theory associated with the soft modes of the underlying fermionic problem. In
our approach, we decouple the interaction by means of a suitable
Hubbard-Stratonovich transformation (following the Hertz-approach), but do not
eliminate the fermions; instead, we derive an exact hierarchy of RG flow
equations for the irreducible vertices of the resulting coupled field theory
involving both fermionic and bosonic fields. The freedom of choosing a momentum
transfer cutoff for the bosonic soft modes in addition to the usual band cutoff
for the fermions opens the possibility of new RG schemes. In particular, we
show how the exact solution of the Tomonaga-Luttinger model emerges from the
functional RG if one works with a momentum transfer cutoff. Then the Ward
identities associated with the local particle conservation at each Fermi point
are valid at every stage of the RG flow and provide a solution of an infinite
hierarchy of flow equations for the irreducible vertices. The RG flow equation
for the irreducible single-particle self-energy can then be closed and can be
reduced to a linear integro-differential equation, the solution of which yields
the result familiar from bosonization. We suggest new truncation schemes of the
exact hierarchy of flow equations, which might be useful even outside the weak
coupling regime.Comment: 27 pages, 15 figures; published version, some typos correcte
P19-03. Molecular mechanisms for enhancing the antigenicity of the carbohydrate epitope of the broadly neutralizing anti-HIV-1 antibody 2G12
Interactions of Candida albicans with host epithelial surfaces
Candida albicans is an opportunistic, fungal pathogen of humans that frequently causes superficial infections
of oral and vaginal mucosal surfaces of debilitated and susceptible individuals. The organism is however,
commonly encountered as a commensal in healthy individuals where it is a component of the normal
microflora. The key determinant in the type of relationship that Candida has with its host is how it interacts
with the epithelial surface it colonises. A delicate balance clearly exists between the potentially damaging
effects of Candida virulence factors and the nature of the immune response elicited by the host. Frequently, it
is changes in host factors that lead to Candida seemingly changing from a commensal to pathogenic existence.
However, given the often reported heterogeneity in morphological and biochemical factors that exist between
Candida species and indeed strains of C. albicans, it may also be the fact that colonising strains differ in the
way they exploit resources to allow persistence at mucosal surfaces and as a consequence this too may affect
the way Candida interacts with epithelial cells. The aim of this review is to provide an overview of some of the
possible interactions that may occur between C. albicans and host epithelial surfaces that may in turn dictate
whether Candida removal, its commensal persistence or infection follows
Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells
Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Calculating Great Britains half-hourly electrical demand from publicly available data
Here we present a method to combine half-hourly publicly available electrical
generation and interconnector data to create a timeseries that approximates
Great Britains electrical demand. Publishing the method and the data provides a
resource to the wider community that can be further enhanced or adapted and
allows the method itself to be considered and critiqued. The method adds value
by combining transmission and distribution generation data into a single
dataset and adding ISO 8601 compatible datetimes to increase interoperability
with other data. The published data is therefore more useable by a wider group
of researchers and stakeholders interested in an example of the rapid
decarbonisation of a countries electrical system.Comment: 33 pages, 3 Figures, 6 table
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
