1,897 research outputs found
Extracting partition statistics from semistructured data
The effective grouping, or partitioning, of semistructured data is of fundamental importance when providing support for queries. Partitions allow items within the data set that share common structural properties to be identified efficiently. This allows queries that make use of these properties, such as branching path expressions, to be accelerated. Here, we evaluate the effectiveness of several partitioning techniques by establishing the number of partitions that each scheme can identify over a given data set. In particular, we explore the use of parameterised indexes, based upon the notion of forward and backward bisimilarity, as a means of partitioning semistructured data; demonstrating that even restricted instances of such indexes can be used to identify the majority of relevant partitions in the data
Ends and means: experts debate the democratic oversight of the UK’s intelligence services
Revelations from Edward Snowden about the scope of intelligence activities in the UK have led to renewed attempts to enhance democratic oversight of the UK’s security services. The heads of MI5, MI6 and GCHQ appeared before the Intelligence and Security Committee for the first time, while Lord Macdonald called for strengthened parliamentary accountability. In this post, we ask democracy and security experts to consider the need for further reform
CoRoT photometry and high-resolution spectroscopy of the interacting eclipsing binary AU Mon
Analyses of very accurate CoRoT space photometry, past Johnson V
photoelectric photometry and high-resolution \'echelle spectra led to the
determination of improved and consistent fundamental stellar properties of both
components of AU Mon. We derived new, accurate ephemerides for both the orbital
motion (with a period of 11.113d) and the long-term, overall brightness
variation (with a period of 416.9d) of this strongly interacting Be + G
semi-detached binary. It is shown that this long-term variation must be due to
attenuation of the total light by some variable circumbinary material. We
derived the binary mass ratio = 0.17\p0.03 based on the
assumption that the G-type secondary fills its Roche lobe and rotates
synchronously. Using this value of the mass ratio as well as the radial
velocities of the G-star, we obtained a consistent light curve model and
improved estimates of the stellar masses, radii, luminosities and effective
temperatures. We demonstrate that the observed lines of the B-type primary may
not be of photospheric origin. We also discover rapid and periodic light
changes visible in the high-quality residual CoRoT light curves. AU Mon is put
into perspective by a comparison with known binaries exhibiting long-term
cyclic light changes.Comment: Accepted for publication in MNRA
The binary properties of the pulsating subdwarf B eclipsing binary PG 1336-018 (NY Virginis)
Aims. We present an unbiased orbit solution and mass determination of the components of the eclipsing binary PG1336−018 as a critical test for the formation scenarios of subdwarf B stars.
Methods. We obtained high-resolution time series VLT/UVES spectra and high-speed multicolour VLT/ULTRACAM photometric
observations of PG1336−018, a rapidly pulsating subdwarf B star in a short period eclipsing binary.
Results. Combining the radial velocity curve obtained from the VLT/UVES spectra with the VLT/ULTRACAM multicolour
lightcurves, we determined numerical orbital solutions for this eclipsing binary. Due to the large number of free parameters and their strong correlations, no unique solution could be found, only families of solutions. We present three solutions of equal statistical
significance, two of which are compatible with the primary having gone through a core He-flash and a common-envelope phase described by the α-formalism. These two models have an sdB primary of 0.466 M and 0.389 M, respectively. Finally, we report the detection of the Rossiter-McLaughlin effect for PG1336−018
(NON)-DETERMINING THE ORIGINAL SPEAKER: REPORTATIVE PARTICLES VERSUS VERBS
This work argues that the Basque reportative particle omen contributes to the propositional contents of the utterance, and it is not an illocutionary force indicator, contrary to what seems to be suggested by the standard view on omen. The results of the application of the assent/dissent test for the case of omen show that subjects not only accept a rejection of the reported content (p), but also a rejection of the evidential content (pomen) itself. The results are similar to those of the verb esan ‘to say’. It is, then, proposed that the difference between these two elements can be explained by distinguishing between the contents of the utterances (with Korta & Perry 2007, 2011), regarding the (non-)articulation of the original speaker
Very Metal-poor Stars in the Outer Galactic Bulge Found by the Apogee Survey
Despite its importance for understanding the nature of early stellar
generations and for constraining Galactic bulge formation models, at present
little is known about the metal-poor stellar content of the central Milky Way.
This is a consequence of the great distances involved and intervening dust
obscuration, which challenge optical studies. However, the Apache Point
Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber,
high-resolution spectroscopic survey within Sloan Digital Sky Survey III
(SDSS-III), is exploring the chemistry of all Galactic stellar populations at
infrared wavelengths, with particular emphasis on the disk and the bulge. An
automated spectral analysis of data on 2,403 giant stars in twelve fields in
the bulge obtained during APOGEE commissioning yielded five stars with low
metallicity([Fe/H]), including two that are very metal-poor
[Fe/H] by bulge standards.
Luminosity-based distance estimates place the five stars within the outer
bulge, where other 1,246 of the analyzed stars may reside. A manual reanalysis
of the spectra verifies the low metallicities, and finds these stars to be
enhanced in the -elements O, Mg, and Si without significant
-pattern differences with other local halo or metal-weak thick-disk
stars of similar metallicity, or even with other more metal-rich bulge stars.
While neither the kinematics nor chemistry of these stars can yet definitively
determine which, if any, are truly bulge members, rather than denizens of other
populations co-located with the bulge, the newly-identified stars reveal that
the chemistry of metal-poor stars in the central Galaxy resembles that of
metal-weak thick-disk stars at similar metallicity.Comment: 6 pages, 3 figures, 2 table
The Apache Point Observatory Galactic Evolution Experiment: First Detection of High Velocity Milky Way Bar Stars
Commissioning observations with the Apache Point Observatory Galactic
Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have
produced radial velocities (RVs) for ~4700 K/M-giant stars in the Milky Way
bulge. These high-resolution (R \sim 22,500), high-S/N (>100 per resolution
element), near-infrared (1.51-1.70 um; NIR) spectra provide accurate RVs
(epsilon_v~0.2 km/s) for the sample of stars in 18 Galactic bulge fields
spanning -1-32 deg. This represents the largest
NIR high-resolution spectroscopic sample of giant stars ever assembled in this
region of the Galaxy. A cold (sigma_v~30 km/s), high-velocity peak (V_GSR \sim
+200 km/s) is found to comprise a significant fraction (~10%) of stars in many
of these fields. These high RVs have not been detected in previous MW surveys
and are not expected for a simple, circularly rotating disk. Preliminary
distance estimates rule out an origin from the background Sagittarius tidal
stream or a new stream in the MW disk. Comparison to various Galactic models
suggests that these high RVs are best explained by stars in orbits of the
Galactic bar potential, although some observational features remain
unexplained.Comment: 7 pages, 4 figures, accepted for publication in ApJ Letter
An asteroseismic study of the beta Cephei star 12 Lacertae: multisite spectroscopic observations, mode identification and seismic modelling
We present the results of a spectroscopic multisite campaign for the beta
Cephei star 12 (DD) Lacertae. Our study is based on more than thousand
high-resolution high S/N spectra gathered with 8 different telescopes in a time
span of 11 months. In addition we make use of numerous archival spectroscopic
measurements. We confirm 10 independent frequencies recently discovered from
photometry, as well as harmonics and combination frequencies. In particular,
the SPB-like g-mode with frequency 0.3428 1/d reported before is detected in
our spectroscopy. We identify the four main modes as (l1,m1) = (1, 1), (l2,m2)
= (0, 0), (l3,m3) = (1, 0) and (l4,m4) = (2, 1) for f1 = 5.178964 1/d, f2 =
5.334224 1/d, f3 = 5.066316 1/d and f4 = 5.490133 1/d, respectively. Our
seismic modelling shows that f2 is likely the radial first overtone and that
the core overshooting parameter alpha_ov is lower than 0.4 local pressure scale
heights.Comment: 16 pages, 11 figures, accepted in MNRA
- …
