271 research outputs found
Generalizing attentional control across dimensions and tasks: evidence from transfer of proportion-congruent effects
Three experiments investigated transfer of list-wide proportion congruent (LWPC) effects from a set of congruent and incongruent items with different frequency (inducer task) to a set of congruent and incongruent items with equal frequency (diagnostic task). Experiments 1 and 2 mixed items from horizontal and vertical Simon tasks. Tasks always involved different stimuli that varied on the same dimension (colour) in Experiment 1 and on different dimensions (colour, shape) in Experiment 2. Experiment 3 mixed trials from a manual Simon task with trials from a vocal Stroop task, with colour being the relevant stimulus in both tasks. There were two major results. First, we observed transfer of LWPC effects in Experiments 1 and 3, when tasks shared the relevant dimension, but not in Experiment 2. Second, sequential modulations of congruency effects transferred in Experiment 1 only. Hence, the different transfer patterns suggest that LWPC effects and sequential modulations arise from different mechanisms. Moreover, the observation of transfer supports an account of LWPC effects in terms of list-wide cognitive control, while being at odds with accounts in terms of stimulus–response (contingency) learning and item-specific control
Punishment sensitivity predicts the impact of punishment on cognitive control
Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control
Is conflict adaptation an illusion?
Conflict adaptation theory is one of the most popular theories in cognitive psychology. The theory argues that participants strategically modulate attention away from distracting stimulus features in response to conflict. Although results with proportion congruent, sequential congruency, and similar paradigms seem consistent with the conflict adaptation view, some researchers have expressed scepticism. The paradigms used in the study of conflict adaptation require the manipulation of stimulus frequencies, sequential dependencies, time-on-task regularities, and various other task regularities that introduce the potential for learning of conflict-unrelated information. This results in the unintentional confounding of measures of conflict adaptation with simpler learning and memory biases. There are also alternative accounts which propose that attentional adaptation does occur, but via different mechanisms, such as valence, expectancy, or effort. A significant (and often heated) debate remains surrounding the question of whether conflict adaptation exists independent of these alternative mechanisms of action. The aim of this Research Topic is to provide a forum for current directions in this area, considering perspectives from all sides of the debate
The role of anterior cingulate cortex in the affective evaluation of conflict
An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict are thought to be registered as aversive signals by ACC, which in turn triggers processing adjustments to support avoidance learning. In support of conflict being treated as an aversive event, recent behavioral studies demonstrated that incongruent (i.e., conflict inducing), relative to congruent, stimuli can speed up subsequent negative, relative to positive, affective picture processing. Here, we used fMRI to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative, relative to positive, pictures elicited higher ACC activation after congruent, relative to incongruent, trials, suggesting that ACC's response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions but disappeared on task alternations. This study supports the proposal that conflict induces negative affect and is the first to show that this affective signal is reflected in ACC activation
Affective modulation of cognitive control is determined by performance-contingency and mediated by ventromedial prefrontal and cingulate cortex
Cognitive control requires a fine balance between stability, the protection of an on-going task-set, and flexibility, the ability to update a task-set in line with changing contingencies. It is thought that emotional processing modulates this balance, but results have been equivocal regarding the direction of this modulation. Here, we tested the hypothesis that a crucial determinant of this modulation is whether affective stimuli represent performance-contingent or task-irrelevant signals. Combining functional magnetic resonance imaging with a conflict task-switching paradigm, we contrasted the effects of presenting negative- and positive-valence pictures on the stability/flexibility trade-off in humans, depending on whether picture presentation was contingent on behavioral performance. Both the behavioral and neural expressions of cognitive control were modulated by stimulus valence and performance contingency: in the performance-contingent condition, cognitive flexibility was enhanced following positive pictures, whereas in the nonperformance-contingent condition, positive stimuli promoted cognitive stability. The imaging data showed that, as anticipated, the stability/flexibility trade-off per se was reflected in differential recruitment of dorsolateral frontoparietal and striatal regions. In contrast, the affective modulation of stability/flexibility shifts was mirrored, unexpectedly, by neural responses in ventromedial prefrontal and posterior cingulate cortices, core nodes of the “default mode” network. Our results demonstrate that the affective modulation of cognitive control depends on the performance contingency of the affect-inducing stimuli, and they document medial default mode regions to mediate the flexibility-promoting effects of performance-contingent positive affect, thus extending recent work that recasts these regions as serving a key role in on-task control processes
Shared neural representations of cognitive conflict and negative affect in the dorsal anterior cingulate cortex
Influential theories of dorsal anterior cingulate cortex (dACC) function suggest that the dACC registers cognitive conflict as an aversive signal, but no study directly tested this idea. In this pre-registered human fMRI study, we used multivariate pattern analyses to identify which regions respond similarly to conflict and aversive signals. The results show that, of all conflict- and value-related regions, only the dACC/pre-SMA showed shared representations, directly supporting recent dACC theories
The congruency sequence effect 3.0: a critical test of conflict adaptation
Over the last two decades, the congruency sequence effect (CSE) -the finding of a reduced congruency effect following incongruent trials in conflict tasks- has played a central role in advancing research on cognitive control. According to the influential conflict-monitoring account, the CSE reflects adjustments in selective attention that enhance task focus when needed, often termed conflict adaptation. However, this dominant interpretation of the CSE has been called into question by several alternative accounts that stress the role of episodic memory processes: feature binding and (stimulus-response) contingency learning. To evaluate the notion of conflict adaptation in accounting for the CSE, we construed versions of three widely used experimental paradigms (the colour-word Stroop, picture-word Stroop and flanker task) that effectively control for feature binding and contingency learning. Results revealed that a CSE can emerge in all three tasks. This strongly suggests a contribution of attentional control to the CSE and highlights the potential of these unprecedentedly clean paradigms for further examining cognitive control
It wasn't me! Motor activation from irrelevant spatial information in the absence of a response
Embodied cognition postulates that perceptual and motor processes serve higher-order cognitive faculties like language. A major challenge for embodied cognition concerns the grounding of abstract concepts. Here we zoom in on abstract spatial concepts and ask the question to what extent the sensorimotor system is involved in processing these. Most of the empirical support in favor of an embodied perspective on (abstract) spatial information has derived from so-called compatibility effects in which a task-irrelevant feature either facilitates (for compatible trials) or hinders (in incompatible trials) responding to the task-relevant feature. This type of effect has been interpreted in terms of (task-irrelevant) feature-induced response activation. The problem with such approach is that incompatible features generate an array of task relevant and irrelevant activations [e.g., in primary motor cortex (M1)], and lateral hemispheric interactions render it difficult to assign credit to the task-irrelevant feature per se in driving these activations. Here, we aim to obtain a cleaner indication of response activation on the basis of abstract spatial information. We employed transcranial magnetic stimulation (TMS) to probe response activation of effectors in response to semantic, task-irrelevant stimuli (i.e., the words left and right) that did not require an overt response. Results revealed larger motor evoked potentials (MEPs) for the right (left) index finger when the word right (left) was presented. Our findings provide support for the grounding of abstract spatial concepts in the sensorimotor system
- …
