74 research outputs found
Effect of COPD treatments on MRP1-mediated transport in bronchial epithelial cells
Margaretha van der Deen1, Sandra Homan1, Hetty Timmer-Bosscha1, Rik J Scheper2, Wim Timens3, Dirkje S Postma4, Elisabeth G de Vries1Departments of 1Medical Oncology, 3Pathology, 4Pulmonary Diseases, University Medical Center Groningen and University of Groningen, The Netherlands; 2Department of Pathology, VU University Medical Center, Amsterdam, The NetherlandsBackground: Smoking is the principle risk factor for development of chronic obstructive pulmonary disease (COPD). Multidrug resistance-associated protein 1 (MRP1) is known to protect against toxic compounds and oxidative stress, and might play a role in protection against smoke-induced disease progression. We questioned whether MRP1-mediated transport is influenced by pulmonary drugs that are commonly prescribed in COPD.Methods: The immortalized human bronchial epithelial cell line 16HBE14o- was used to analyze direct in vitro effects of budesonide, formoterol, ipratropium bromide and N-acetylcysteine (NAC) on MRP1-mediated transport. Carboxyfluorescein (CF) was used as a model MRP1 substrate and was measured with functional flow cytometry.Results: Formoterol had a minor effect, whereas budesonide concentration-dependently decreased CF transport by MRP1. Remarkably, addition of formoterol to the highest concentration of budesonide increased CF transport. Ipratropium bromide inhibited CF transport at low concentrations and tended to increase CF transport at higher levels. NAC increased CF transport by MRP1 in a concentration-dependent manner.Conclusions: Our data suggest that, besides their positive effects on respiratory symptoms, budesonide, formoterol, ipratropium bromide, and NAC modulate MRP1 activity in bronchial epithelial cells. Further studies are required to assess whether stimulation of MRP1 activity is beneficial for long-term treatment of COPD.Keywords: bronchus epithelium, COPD, drugs, MRP1, multidrug resistance, oxidative stres
Reduced inflammatory response in cigarette smoke exposed Mrp1/Mdr1a/1b deficient mice
<p>Abstract</p> <p>Background</p> <p>Tobacco smoke is the principal risk factor for chronic obstructive pulmonary disease (COPD), though the mechanisms of its toxicity are still unclear. The ABC transporters multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein (P-gp/MDR1) extrude a wide variety of toxic substances across cellular membranes and are highly expressed in bronchial epithelium. Their impaired function may contribute to COPD development by diminished detoxification of noxious compounds in cigarette smoke.</p> <p>Methods</p> <p>We examined whether triple knock-out (TKO) mice lacking the genes for <it>Mrp1 </it>and <it>Mdr1a/1b </it>are more susceptible to develop COPD features than their wild-type (WT) littermates. TKO and WT mice (six per group) were exposed to 2 cigarettes twice daily by nose-only exposure or room air for 6 months. Inflammatory infiltrates were analyzed in lung sections, cytokines and chemokines in whole lung homogenates, emphysema by mean linear intercept. Multiple linear regression analysis with an interaction term was used to establish the statistical significances of differences.</p> <p>Results</p> <p>TKO mice had lower levels of interleukin (IL)-7, KC (mouse IL-8), IL-12p70, IL-17, TNF-alpha, G-CSF, GM-CSF and MIP-1-alpha than WT mice independent of smoke exposure (<it>P </it>< 0.05). IL-1-alpha, IL-6, IL-8, IL-13, IL-17, TNF-alpha, G-CSF, GM-CSF and MCP-1 increased after smoke exposure in both groups, but the increase in IL-8 was lower in TKO than WT mice (<it>P </it>< 0.05) with a same trend for G-CSF (<it>P </it>< 0.10). Smoke-induced increase in pulmonary inflammatory cells in WT mice was almost absent in TKO mice. The mean linear intercept was not different between groups.</p> <p>Conclusion</p> <p><it>Mrp1/Mdr1a/1b </it>knock-out mice have a reduced inflammatory response to cigarette smoke. In addition, the expression levels of several cytokines and chemokines were also lower in lungs of <it>Mrp1/Mdr1a/1b </it>knock-out mice independent of smoke exposure. Further studies are required to determine whether dysfunction of MRP1 and/or P-gp contribute to the pathogenesis of COPD.</p
Inconsistent responses of carabid beetles and spiders to land-use intensity and landscape complexity in north-western Europe
Reconciling biodiversity conservation with agricultural production requires a better understanding of how key ecosystem service providing species respond to agricultural intensification. Carabid beetles and spiders represent two widespread guilds providing biocontrol services. Here we surveyed carabid beetles and spiders in 66 winter wheat fields in four northwestern European countries and analyzed how the activity density and diversity of carabid beetles and spiders were related to crop yield (proxy for land-use intensity), percentage cropland (proxy for landscape complexity) and soil organic carbon content, and whether these patterns differed between dominant and non-dominant species. 90 % of individuals respectively. We found that carabids and spiders were generally related to different aspects of agricultural intensification. Carabid species richness was positively related with crop yield and evenness was negatively related to crop cover. The activity density of non-dominant carabids was positively related with soil organic carbon content. Meanwhile, spider species richness and non-dominant spider species richness and activity density were all negatively related to percentage cropland. Our results show that practices targeted to enhance one functionally important guild may not promote another key guild, which helps explain why conservation measures to enhance natural enemies generally do not ultimately enhance pest regulation. Dominant and non-dominant species of both guilds showed mostly similar responses suggesting that manage-ment practices to enhance service provisioning by a certain guild can also enhance the overall diversity of that particular guild
A Situational Alignment Framework for PACS
This paper reports the outcomes of a study on an integrated situational alignment framework for picture archiving and communication systems (PACS) labeled as PISA. Following the design research cycle, complementary validation methods and pilot cases were used to assess the proposed framework and its operationalized survey. In this paper, the authors outline (a) the process of the framework’ development, (b) the validation process with its underlying iterative steps, (c) the outcomes of pilot cases, and (d) improvement opportunities to refine and further validate the PISA framework. Results of this study support empirical application of the framework to hospital enterprises in order to gain insights into their PACS maturity and alignment. We argue that the framework can be applied as a valuable tool for assessments, monitoring and benchmarking purposes and strategic PACS planning
Recommended from our members
Inconsistent responses of carabid beetles and spiders to land-use intensity and landscape complexity in north-western Europe
Reconciling biodiversity conservation with agricultural production requires a better understanding of how key ecosystem service providing species respond to agricultural intensification. Carabid beetles and spiders represent two widespread guilds providing biocontrol services. Here we surveyed carabid beetles and spiders in 66 winter wheat fields in four northwestern European countries and analyzed how the activity density and diversity of carabid beetles and spiders were related to crop yield (proxy for land-use intensity), percentage cropland (proxy for landscape complexity) and soil organic carbon content, and whether these patterns differed between dominant and non-dominant species. 90 % of individuals respectively. We found that carabids and spiders were generally related to different aspects of agricultural intensification. Carabid species richness was positively related with crop yield and evenness was negatively related to crop cover. The activity density of non-dominant carabids was positively related with soil organic carbon content. Meanwhile, spider species richness and non-dominant spider species richness and activity density were all negatively related to percentage cropland. Our results show that practices targeted to enhance one functionally important guild may not promote another key guild, which helps explain why conservation measures to enhance natural enemies generally do not ultimately enhance pest regulation. Dominant and non-dominant species of both guilds showed mostly similar responses suggesting that management practices to enhance service provisioning by a certain guild can also enhance the overall diversity of that particular guild
Impaired GABAergic regulation and developmental immaturity in interneurons derived from the medial ganglionic eminence in the tuberous sclerosis complex
GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABA A receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions
Loss of maturity and homeostatic functions in Tuberous Sclerosis Complex-derived astrocytes
INTRODUCTION: Constitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network. METHODS: We employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment. RESULTS: We found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities. DISCUSSION: Our study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions
Astroglial calcium signaling and homeostasis in tuberous sclerosis complex
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca 2+) channels and intracellular Ca 2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca 2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca 2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca 2+ concentration and Ca 2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca 2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca 2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development
Loss of maturity and homeostatic functions in Tuberous Sclerosis Complex-derived astrocytes
IntroductionConstitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network.MethodsWe employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment.ResultsWe found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities.DiscussionOur study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions
The Emerging Value of Social Computing in Business Model Innovation
The value of Social Computing and its application in business has largely remained unclear until now. However, this chapter reveals that Social Computing principles may have important business value, as they can help lower transaction costs. This makes the Social Computing development here to stay, instead of another hype. This chapter describes Social Computing with nine technological and social principles, obtained by comparing both Internet and academic sources in this field, being Open Platform, Lightweight Models, Enabling Services, Intuitive Usability, Long Tail, Unbounded Collaboration, Collective Intelligence, Network Effects, and User Generated Content. The results show that Social Computing provides most support in those aspects of business where connections with the environment exist; the relations with partners and customers. This chapter will explain what Social Computing is, and how one can use it to increase business value.</jats:p
- …
