164 research outputs found

    Preserving cultural heritage: Analyzing the antifungal potential of ionic liquids tested in paper restoration

    Get PDF
    Early industrialization and the development of cheap production processes for paper have led to an exponential accumulation of paper-based documents during the last two centuries. Archives and libraries harbor vast amounts of ancient and modern documents and have to undertake extensive endeavors to protect them from abiotic and biotic deterioration. While services for mechanical preservation such as ex post de-acidification of historic documents are already commercially available, the possibilities for long-term protection of paper-based documents against fungal attack (apart from temperature and humidity control) are very limited. Novel processes for mechanical enhancement of damaged cellulosic documents use Ionic Liquids (IL) as essential process components. With some of these ILs having azolefunctionalities similar to well-known fungicides such as Clotrimazole, the possibility of antifungal activities of these ILs was proposed but has not yet been experimentally confirmed. We evaluated the potency of four ILs with potential application in paper restoration for suppression of fungal growth on five relevant paper-infesting molds. The results revealed a general antifungal activity of all ILs, which increased with the size of the non-polar group. Physiological experiments and ultimate elemental analysis allowed to determine the minimal inhibitory concentration of each IL as well as the residual IL concentration in process-treated paper. These results provide valuable guidelines for IL-applications in paper restoration processes with antifungal activity as an added benefit. With azoles remaining in the paper after the process, simultaneous repair and biotic protection in treated documents could be facilitated

    Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: Towards lignin depolymerisation

    Get PDF
    Lignin depolymerisation has received considerable attention recently due to the pressing need to find sustainable alternatives to fossil fuel feedstock to produce chemicals and fuels. Two types of interunit linkages (C–C and C–O linkages) link several aromatic units in the structure of lignin. Between these two inter-unit linkages, the bond energies of C–C linkages are higher than that of C–O linkages, making them harder to break. However, for an efficient lignin depolymerisation, both types of inter-unit linkages have to be broken. This is more relevant because of the fact that many delignification processes tend to result in the formation of additional C–C inter-unit bonds. Here we review the strategies reported for the cleavage of C–C inter-unit linkages in lignin model compounds and lignin. Although a number of articles are available on the cleavage of C–O inter-unit linkages, reports on the selective cleavage of C–C inter-unit linkages are relatively less. Oxidative cleavage, hydrogenolysis, two-step redox-neutral process, microwave assisted cleavage, biocatalytic and photocatalytic methods have been reported for the breaking of C–C inter-unit linkages in lignin. Here we review all these methods in detail, focused only on the breaking of C–C linkages. The objective of this review is to motivate researchers to design new strategies to break this strong C–C inter-unit bonds to valorise lignins, technical lignins in particular

    Quantitative characterization of chemical degradation of heat-treated wood surfaces during artificial weathering using XPS

    Get PDF
    The X‐ray photoelectron spectroscopy (XPS) study of three heat‐treated North American wood species (jack pine, birch and aspen) was carried out to evaluate chemical modifications occurring on the wood surface during artificial weathering for different times. The results suggest that the weathering reduces lignin content (aromatic rings) at the surface of heat‐treated wood, consequently, the carbohydrates content increases. This results in surfaces richer in cellulose and poorer in lignin. Heat‐treated wood surfaces become acidic due to weathering, and the acidity increases as the weathering time increases. Three possible reasons are given to account for the increase of acidity during weathering. The lignin content increases, whereas the hemicelluloses content decrease due to heat treatment. Heat‐treated woods have lower acidity to basicity ratios than the corresponding untreated woods for all three species because of the decrease in carboxylic acid functions mainly present in hemicelluloses. The wood composition changes induced by weathering are more significant compared to those induced by heat treatment at wood surface. Exposure to higher temperatures causes more degradation of hemicelluloses, and this characteristic is maintained during weathering. However, the wood direction has more effect on chemical composition modification during weathering compared to that of heat treatment temperature. The heat‐treated jack pine is affected most by weathering followed by heat‐treated aspen and birch. This is related to differences in content and structure of lignin of softwood and hardwood. The use of XPS technique has proved to be a reliable method for wood surface studies
    corecore