1,473 research outputs found

    Matching of the Heavy-Light Currents with NRQCD Heavy and Improved Naive Light Quarks

    Full text link
    One-loop matching of heavy-light currents is carried out for a highly improved lattice action, including the effects of mixings with dimension 4 O(1/M) and O(a) operators. We use the NRQCD action for heavy quarks, the Asqtad improved naive action for light quarks, and the Symanzik improved glue action. These results are being used in recent heavy meson decay constant and semileptonic form factor calculations on the MILC dynamical configurations.Comment: 3 pages, 3 figures. Talk presented at Lattice2004(heavy

    B Leptonic Decays and B- bar B Mixing with 2+1 Flavors of Dynamical Quarks

    Get PDF
    Calculations of B leptonic decays and B- bar B mixing using NRQCD heavy and Asqtad light valence quarks on the MILC dynamical configurations are described. Smearing has been implemented to substantially reduce the statistical errors of the matrix elements needed for the determination of f_B. The four-fermion matrix elements needed for the determination of f_{B_s}^2B_{B_s} have been calculated and a preliminary result is given.Comment: 3 pages, 3 figures, talk given at Lattice2004(heavy), Batavia, Illinois, 21-26 Jun 200

    B Decays on the Lattice and Results for Phenomenology

    Full text link
    Lattice Monte Carlo simulations now include the effects of 2 light sea quarks and 1 strange sea quark through the use of an improved staggered fermion action. Consequently, results important to phenomenology are free of the approximate 10% errors inherent in the quenched approximation. This talk reports on calculations of the B and Bs decay constants and B -> pi l nu form factors. Accurate determinations of these quantities will lead to tighter constraints on CKM matrix elements.Comment: Contributed to the Proceedings of American Physical Society's 2004 Meeting of the Division of Particles and Fields (DPF2004), Riverside, CA, 26-31 August 2004. 3 page

    On the Two-point Correlation of Potential Vorticity in Rotating and Stratified Turbulence

    Full text link
    A framework is developed to describe the two-point statistics of potential vorticity in rotating and stratified turbulence as described by the Boussinesq equations. The Karman-Howarth equation for the dynamics of the two-point correlation function of potential vorticity reveals the possibility of inertial-range dynamics in certain regimes in the Rossby, Froude, Prandtl and Reynolds number parameters. For the case of large Rossby and Froude numbers, and for the case of quasi-geostrophic dynamics, a linear scaling law with 2/3 prefactor is derived for the third-order mixed correlation between potential vorticity and velocity, a result that is analogous to the Kolmogorov 4/5-law for the third-order velocity structure function in turbulence theory.Comment: 10 pages, to appear in Journal of Fluid Mechanics (2006

    The B Meson Decay Constant from Unquenched Lattice QCD

    Get PDF
    We present determinations of the B meson decay constant f_B and of the ratio f_{B_s}/f_B using the MILC collaboration unquenched gauge configurations which include three flavors of light sea quarks. The mass of one of the sea quarks is kept around the strange quark mass, and we explore a range in masses for the two lighter sea quarks down to m_s/8. The heavy b quark is simulated using Nonrelativistic QCD, and both the valence and sea light quarks are represented by the highly improved (AsqTad) staggered quark action. The good chiral properties of the latter action allow for a much smoother chiral extrapolation to physical up and down quarks than has been possible in the past. We find f_B = 216(9)(19)(4) (6) MeV and f_{B_s} /f_B = 1.20(3)(1).Comment: 4 pages, 2 figure

    Dynamical determination of B_K from improved staggered quarks

    Full text link
    The scaling corrections that affected previous staggered calculations of B_K have been proved to be reduced by using improved actions (HYP, Asqtad) in the quenched approximation. This improved behaviour allows us to perform a reliable dynamical calculation of B_K including quark vacuum polarization effects using the MILC (2+1) flavour dynamical configurations. We report here on the results from such dynamical calculation. We also discuss the renormalization effects with the Asqtad action.Comment: 6 pages, 2 figures. Talk presented at Lattice 2005 (Dublin). To appear in Proceedings of Scienc

    Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.This paper presents, discusses and analyses a massively parallel-in-time solver for linear oscillatory PDEs, which is a key numerical component for evolving weather, ocean, climate and seismic models. The time parallelization in this solver allows us to significantly exceed the computing resources used by parallelization-in-space methods and results in a correspondingly significantly reduced wall-clock time. One of the major difficulties of achieving Exascale performance for weather prediction is that the strong scaling limit – the parallel performance for a fixed problem size with an increasing number of processors – saturates. A main avenue to circumvent this problem is to introduce new numerical techniques that take advantage of time parallelism. In this paper we use a time-parallel approximation that retains the frequency information of oscillatory problems. This approximation is based on (a) reformulating the original problem into a large set of independent terms and (b) solving each of these terms independently of each other which can now be accomplished on a large number of HPC resources. Our results are conducted on up to 3586 cores for problem sizes with the parallelization-in-space scalability limited already on a single node. We gain significant reductions in the time-to-solution of 118.3 for spectral methods and 1503.0 for finite-difference methods with the parallelizationin-time approach. A developed and calibrated performance model gives the scalability limitations a-priory for this new approach and allows us to extrapolate the performance method towards large-scale system. This work has the potential to contribute as a basic building block of parallelization-in-time approaches, with possible major implications in applied areas modelling oscillatory dominated problems.The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz. de). We also acknowledge use of Hartree Centre resources in this work on which the early evaluation of the parallelization concepts were done

    The Upsilon spectrum and m_b from full lattice QCD

    Get PDF
    We show results for the Upsilon spectrum calculated in lattice QCD including for the first time vacuum polarization effects for light u and d quarks as well as s quarks. We use gluon field configurations generated by the MILC collaboration. The calculations compare the results for a variety of u and d quark masses, as well as making a comparison to quenched results (in which quark vacuum polarisation is ignored) and results with only u and d quarks. The b quarks in the Upsilon are treated in lattice Nonrelativistic QCD through NLO in an expansion in the velocity of the b quark. We concentrate on accurate results for orbital and radial splittings where we see clear agreement with experiment once u, d and s quark vacuum polarisation effects are included. This now allows a consistent determination of the parameters of QCD. We demonstrate this consistency through the agreement of the Upsilon and B spectrum using the same lattice bare b quark mass. A one-loop matching to continuum QCD gives a value for the b quark mass in full lattice QCD for the first time. We obtain m_b^{\bar{MS}}(m_b^{\bar{MS}}) = 4.4(3) GeV. We are able to give physical results for the heavy quark potential parameters, r_0 = 0.469(7) fm and r_1 = 0.321(5) fm. Results for the fine structure in the spectrum and the Upsilon leptonic width are also presented. We predict the Upsilon - eta_b splitting to be 61(14) MeV, the Upsilon^{\prime} - eta_b^{\prime} splitting as 30(19) MeV and the splitting between the h_b and the spin-average of the chi_b states to be less than 6 MeV. Improvements to these calculations that will be made in the near future are discussed.Comment: 24 pages, 19 figures. Version to be published. Minor changes made and typographical errors corrected. Experimental leptonic widths updated in section
    corecore