1,473 research outputs found
Matching of the Heavy-Light Currents with NRQCD Heavy and Improved Naive Light Quarks
One-loop matching of heavy-light currents is carried out for a highly
improved lattice action, including the effects of mixings with dimension 4
O(1/M) and O(a) operators. We use the NRQCD action for heavy quarks, the Asqtad
improved naive action for light quarks, and the Symanzik improved glue action.
These results are being used in recent heavy meson decay constant and
semileptonic form factor calculations on the MILC dynamical configurations.Comment: 3 pages, 3 figures. Talk presented at Lattice2004(heavy
B Leptonic Decays and B- bar B Mixing with 2+1 Flavors of Dynamical Quarks
Calculations of B leptonic decays and B- bar B mixing using NRQCD heavy and
Asqtad light valence quarks on the MILC dynamical configurations are described.
Smearing has been implemented to substantially reduce the statistical errors of
the matrix elements needed for the determination of f_B. The four-fermion
matrix elements needed for the determination of f_{B_s}^2B_{B_s} have been
calculated and a preliminary result is given.Comment: 3 pages, 3 figures, talk given at Lattice2004(heavy), Batavia,
Illinois, 21-26 Jun 200
B Decays on the Lattice and Results for Phenomenology
Lattice Monte Carlo simulations now include the effects of 2 light sea quarks
and 1 strange sea quark through the use of an improved staggered fermion
action. Consequently, results important to phenomenology are free of the
approximate 10% errors inherent in the quenched approximation. This talk
reports on calculations of the B and Bs decay constants and B -> pi l nu form
factors. Accurate determinations of these quantities will lead to tighter
constraints on CKM matrix elements.Comment: Contributed to the Proceedings of American Physical Society's 2004
Meeting of the Division of Particles and Fields (DPF2004), Riverside, CA,
26-31 August 2004. 3 page
On the Two-point Correlation of Potential Vorticity in Rotating and Stratified Turbulence
A framework is developed to describe the two-point statistics of potential
vorticity in rotating and stratified turbulence as described by the Boussinesq
equations. The Karman-Howarth equation for the dynamics of the two-point
correlation function of potential vorticity reveals the possibility of
inertial-range dynamics in certain regimes in the Rossby, Froude, Prandtl and
Reynolds number parameters. For the case of large Rossby and Froude numbers,
and for the case of quasi-geostrophic dynamics, a linear scaling law with 2/3
prefactor is derived for the third-order mixed correlation between potential
vorticity and velocity, a result that is analogous to the Kolmogorov 4/5-law
for the third-order velocity structure function in turbulence theory.Comment: 10 pages, to appear in Journal of Fluid Mechanics (2006
The B Meson Decay Constant from Unquenched Lattice QCD
We present determinations of the B meson decay constant f_B and of the ratio
f_{B_s}/f_B using the MILC collaboration unquenched gauge configurations which
include three flavors of light sea quarks. The mass of one of the sea quarks is
kept around the strange quark mass, and we explore a range in masses for the
two lighter sea quarks down to m_s/8.
The heavy b quark is simulated using Nonrelativistic QCD, and both the
valence and sea light quarks are represented by the highly improved (AsqTad)
staggered quark action.
The good chiral properties of the latter action allow for a much smoother
chiral extrapolation to physical up and down quarks than has been possible in
the past. We find f_B = 216(9)(19)(4) (6) MeV and f_{B_s} /f_B = 1.20(3)(1).Comment: 4 pages, 2 figure
Dynamical determination of B_K from improved staggered quarks
The scaling corrections that affected previous staggered calculations of B_K
have been proved to be reduced by using improved actions (HYP, Asqtad) in the
quenched approximation. This improved behaviour allows us to perform a reliable
dynamical calculation of B_K including quark vacuum polarization effects using
the MILC (2+1) flavour dynamical configurations. We report here on the results
from such dynamical calculation. We also discuss the renormalization effects
with the Asqtad action.Comment: 6 pages, 2 figures. Talk presented at Lattice 2005 (Dublin). To
appear in Proceedings of Scienc
Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems
This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.This paper presents, discusses and analyses a massively parallel-in-time solver for linear oscillatory PDEs, which
is a key numerical component for evolving weather, ocean, climate and seismic models. The time parallelization in
this solver allows us to significantly exceed the computing resources used by parallelization-in-space methods and
results in a correspondingly significantly reduced wall-clock time. One of the major difficulties of achieving Exascale
performance for weather prediction is that the strong scaling limit – the parallel performance for a fixed problem size
with an increasing number of processors – saturates. A main avenue to circumvent this problem is to introduce new
numerical techniques that take advantage of time parallelism. In this paper we use a time-parallel approximation that
retains the frequency information of oscillatory problems. This approximation is based on (a) reformulating the original
problem into a large set of independent terms and (b) solving each of these terms independently of each other which
can now be accomplished on a large number of HPC resources. Our results are conducted on up to 3586 cores for
problem sizes with the parallelization-in-space scalability limited already on a single node. We gain significant reductions
in the time-to-solution of 118.3 for spectral methods and 1503.0 for finite-difference methods with the parallelizationin-time
approach. A developed and calibrated performance model gives the scalability limitations a-priory for this new
approach and allows us to extrapolate the performance method towards large-scale system. This work has the potential
to contribute as a basic building block of parallelization-in-time approaches, with possible major implications in applied
areas modelling oscillatory dominated problems.The authors gratefully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer
SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.
de). We also acknowledge use of Hartree Centre resources in this
work on which the early evaluation of the parallelization concepts
were done
The Upsilon spectrum and m_b from full lattice QCD
We show results for the Upsilon spectrum calculated in lattice QCD including
for the first time vacuum polarization effects for light u and d quarks as well
as s quarks. We use gluon field configurations generated by the MILC
collaboration. The calculations compare the results for a variety of u and d
quark masses, as well as making a comparison to quenched results (in which
quark vacuum polarisation is ignored) and results with only u and d quarks. The
b quarks in the Upsilon are treated in lattice Nonrelativistic QCD through NLO
in an expansion in the velocity of the b quark. We concentrate on accurate
results for orbital and radial splittings where we see clear agreement with
experiment once u, d and s quark vacuum polarisation effects are included. This
now allows a consistent determination of the parameters of QCD. We demonstrate
this consistency through the agreement of the Upsilon and B spectrum using the
same lattice bare b quark mass. A one-loop matching to continuum QCD gives a
value for the b quark mass in full lattice QCD for the first time. We obtain
m_b^{\bar{MS}}(m_b^{\bar{MS}}) = 4.4(3) GeV. We are able to give physical
results for the heavy quark potential parameters, r_0 = 0.469(7) fm and r_1 =
0.321(5) fm. Results for the fine structure in the spectrum and the Upsilon
leptonic width are also presented. We predict the Upsilon - eta_b splitting to
be 61(14) MeV, the Upsilon^{\prime} - eta_b^{\prime} splitting as 30(19) MeV
and the splitting between the h_b and the spin-average of the chi_b states to
be less than 6 MeV. Improvements to these calculations that will be made in the
near future are discussed.Comment: 24 pages, 19 figures. Version to be published. Minor changes made and
typographical errors corrected. Experimental leptonic widths updated in
section
- …
