3,429 research outputs found

    Sugar Maple Borer (Coleoptera: Cerambycidae) Activity Associated With Periods of Severe Defoliation

    Get PDF
    A perusal of previous research on sugar maple borer, Glycobius speciosus, in northern New York State strongly associates severe early and late season defoliation with increased borer damage. This re-examination of earlier work suggests foliage protection may be necessary when forest management objectives are concerned with wood volume and quality

    The Nature of Optical Features in the Inner Region of the 3C48 Host Galaxy

    Get PDF
    The well-known quasar 3C48 is the most powerful compact steep-spectrum radio-loud QSO at low redshifts. It also has two unusual optical features within the radius of the radio jet (~1"): (1) an anomalous, high-velocity narrow-line component, having several times as much flux as does the narrow-line component coinciding with the broad-line redshift; and (2) a bright continuum peak (3C48A) ~1" northeast of the quasar. Both of these optical features have been conjectured to be related to the radio jet. Here we explore these suggestions. We have obtained Gemini North GMOS integral-field-unit (IFU) spectroscopy of the central region around 3C48. We use the unique features of the IFU data to remove unresolved emission at the position of the quasar. The resolved emission at the wavelength of the high-velocity component is peaked <~0.25" north of the quasar, at virtually the same position angle as the base of the radio jet. These observations appear to confirm that this high-velocity gas is connected with the radio jet. However, most of the emission comes from a region where the jet is still well collimated, rather than from the regions where the radio maps indicate strong interaction with an external medium. We also present the results of HST STIS spectroscopy of 3C48A. We show that 3C48A is dominated by stars with a luminosity-weighted age of ~1.4 X 10^8 years, substantially older than any reasonable estimate for the age of the radio source. Our IFU data indicate a similar age. Thus, 3C48A almost certainly cannot be attributed to jet-induced star formation. The host galaxy of 3C48 is clearly the result of a merger, and 3C48A seems much more likely to be the distorted nucleus of the merging partner, in which star formation was induced during the previous close passage.Comment: 10 pages, accepted by The Astrophysical Journa

    3C 48: Stellar Populations and the Kinematics of Stars and Gas in the Host Galaxy

    Get PDF
    We present deep Keck LRIS spectroscopy of the host galaxy of 3C 48. Our observations at various slit positions sample the different luminous components near the quasar, including the apparent tidal tail to the NW and several strong emission line regions. By fitting Bruzual & Charlot (1996) population synthesis models to our spectra, we obtain ages for the most recent major episodes of star formation in various parts of the host galaxy covered by our slits. There is vigorous current star formation in regions just NE and SE of the quasar and post-starburst regions with ages up to ~10^8 years in other parts of the host galaxy, but most of the NW tidal tail shows no sign of significant recent star formation. We use these model fits, together with the kinematics of the stars and gas, to outline a plausible evolutionary history for the host galaxy, its recent starburst activity, the triggering of the quasar, and the interaction of the radio jet with the ambient gas. There is strong evidence that the 3C 48 host is an ongoing merger, and that it is probably near the peak of its starburst activity. Nevertheless, the quasar itself seems to suffer little extinction, perhaps because we are viewing it along a particularly favorable line-of-sight.Comment: 27 pages plus 11 figures (7 postscript, 4 gif). Postscript version including figures (1840 kb) available at http://www.ifa.hawaii.edu/~canaguby/preprints.html . Accepted for publication in Ap

    Radio Supernova SN 1998bw and Its Relation to GRB 980425

    Full text link
    SN 1998bw is an unusual Type Ic supernova that may be associated with the γ\gamma-ray burst GRB 980425. We use a synchrotron self-absorption model for its radio emission to deduce that the synchrotron-emitting gas is expanding into a circumstellar medium of approximately r2r^{-2} density profile, at a speed comparable to the speed of light. We assume that the efficiencies of production of relativistic electrons and magnetic field are constant through the evolution. The circumstellar density is consistent with that expected around the massive star core thought to be the progenitor of SN 1998bw. The explosion energy in material moving with velocity >0.5c>0.5c is 10493×1050\sim 10^{49}- 3\times 10^{50} ergs, with some preference for the high values. The rise in the radio light curves observed at days 20-40 is inferred to be the result of a rise in the energy of the blast wave by a factor 2.5\sim 2.5. Interaction with a jump in the ambient density is not consistent with the observed evolution. We infer that the boost in energy is from a shell of matter from the explosion that catches up with the decelerating shock front. Both the high explosion energy and the nature of the energy input to the blast wave are difficult to reconcile with energy input from the shock-accelerated high velocity ejecta from a supernova. The implication is that there is irregular energy input from a central engine, which is the type of model invoked for normal γ\gamma-ray bursts. The link between SN 1998bw and GRB 980425 is thus strengthened.Comment: 21 pages, 9 figures, revised version to appear in Ap

    Hot gas and dust in a protostellar cluster near W3(OH

    Get PDF
    We used the IRAM Interferometer to obtain sub-arcsecond resolution observations of the high-mass star-forming region W3(OH) and its surroundings at a frequency of 220 GHz. With the improved angular resolution, we distinguish 3 peaks in the thermal dust continuum emission originating from the hot core region about 6 arcsec (0.06 pc) east of W3(OH). The dust emission peaks are coincident with known radio continuum sources, one of which is of non-thermal nature. The latter source is also at the center of expansion of a powerful bipolar outflow observed in water maser emission. We determine the hot core mass to be 15 solar masses based on the integrated dust continuum emission. Simultaneously many molecular lines are detected allowing the analysis of the temperature structure and the distribution of complex organic molecules in the hot core. From HNCO lines, spanning a wide range of excitation, two 200 K temperature peaks are found coincident with dust continuum emission peaks suggesting embedded heating sources within them.Comment: 12 pages, 3 figure

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: I. Data

    Full text link
    We present full-polarization VLBA maps of the ground-state, main-line, 2 Pi 3/2, J = 3/2 OH masers in 18 Galactic massive star-forming regions. This is the first large polarization survey of interstellar hydroxyl masers at VLBI resolution. A total of 184 Zeeman pairs are identified, and the corresponding magnetic field strengths are indicated. We also present spectra of the NH3 emission or absorption in these star-forming regions. Analysis of these data will be presented in a companion paper.Comment: 111 pages, including 42 figures and 21 tables, to appear in ApJ

    A multi-particle model of the 3C 48 host

    Full text link
    The first successful multi-particle model for the host of the well-known quasi-stellar object (QSO) 3C 48 is reported. It shows that the morphology and the stellar velocity field of the 3C 48 host can be reproduced by the merger of two disk galaxies. The conditions of the interaction are similar to those used for interpreting the appearance of the ''Antennae'' (NGC 4038/39) but seen from a different viewing angle. The model supports the controversial hypothesis that 3C 48A is the second nucleus of a merging galaxy, and it suggests a simple solution for the problem of the missing counter tidal tail.Comment: 5 pages, 5 figures, accepted for publication in A&

    Radio Continuum and Recombination Line Study of UC HII Regions with Extended Envelopes

    Get PDF
    We have carried out 21 cm radio continuum observations of 16 UC HII regions using the VLA (D-array) in search of associated extended emission. We have also observed H76α_\alpha recombination line towards all the sources and He76α_\alpha line at the positions with strong H76α_\alpha line emission. The UC HII regions have simple morphologies and large (>10) ratios of single-dish to VLA fluxes. Extended emission was detected towards all the sources. The extended emission consists of one to several compact components and a diffuse extended envelope. All the UC HII regions but two are located in the compact components, where the UC HII regions always correspond to their peaks. The compact components with UC HII regions are usually smaller and denser than those without UC HII regions. Our recombination line observations indicate that the ultracompact, compact, and extended components are physically associated. The UC HII regions and their associated compact components are likely to be ionized by the same sources on the basis of the morphological relations mentioned above. This suggests that almost all of the observed UC HII regions are not `real' UC HII regions and that their actual ages are much greater than their dynamical age (<10000 yr). We find that most of simple UC HII regions previously known have large ratios of single-dish to VLA fluxes, similar to our sources. Therefore, the `age problem' of UC HII regions does not seem to be as serious as earlier studies argued. We present a simple model that explains extended emission around UC HII regions. Some individual sources are discussed.Comment: 29 pages, 28 postscript figures, Accepted for publication in Ap
    corecore