573 research outputs found
Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance.
Expression of the chromatin-associated protein HMGA2 correlates with progression, metastasis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Hmga2 has also been identified as a marker of a transient subpopulation of PDAC cells that has increased metastatic ability. Here, we characterize the requirement for Hmga2 during growth, dissemination, and metastasis of PDAC in vivo using conditional inactivation of Hmga2 in well-established autochthonous mouse models of PDAC. Overall survival, primary tumour burden, presence of disseminated tumour cells in the peritoneal cavity or circulating tumour cells in the blood, and presence and number of metastases were not significantly different between mice with Hmga2-wildtype or Hmga2-deficient tumours. Treatment of mice with Hmga2-wildtype and Hmga2-deficient tumours with gemcitabine did not uncover a significant impact of Hmga2-deficiency on gemcitabine sensitivity. Hmga1 and Hmga2 overlap in their expression in both human and murine PDAC, however knockdown of Hmga1 in Hmga2-deficient cancer cells also did not decrease metastatic ability. Thus, Hmga2 remains a prognostic marker which identifies a metastatic cancer cell state in primary PDAC, however Hmga2 has limited if any direct functional impact on PDAC progression and therapy resistance
The Architecture of Accommodation
The design process is complex. As a teacher of architecture, one of my tasks is the simplification of this process: the development of a clear set of objectives and the design of a series of tasks which move the assigned project toward completion
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Refashioning the Ethiopian monarchy in the twentieth century:An intellectual history
This article traces the shift in the Ethiopian monarchical ideology from lineage as symbolic Christian filiation to dynasty as a political genealogy of sovereign power. From the end of the nineteenth century, and more prominently under Haylä Səllase, Ethiopian state sources started qualifying the Ethiopian ruling dynasty as ‘unbroken’ in history. A record of ‘uninterrupted’ power allowed the Ethiopian government to politically appropriate past glories and claim them as ‘ours’, thus compensating for the political weakness of the present with the political greatness of the past. The ideological rebranding of the Ethiopian monarchy in the 1930s brought Ethiopia closer to Japan, and the ‘eternalist clause’ of the Meiji constitution offered a powerful model of how to recodify dynasty in modern legal terms. An intellectual history of dynasty in the Ethiopian context sees the concept simultaneously associated with both hegemonic and counter-hegemonic political projects. The narratives of continuity enabled by the dynastisation of history were successful in invigorating the pro-Ethiopian front during the Italian occupation of Ethiopia (1936–1941), but served at the same time to reinforce domestic mechanisms of class, political and cultural domination.</p
Results from the Cuore Experiment
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO2 exposure of 86.3kg yr, characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts/ (keV kg yr). In this physics run, CUORE placed a lower limit on the decay half- life of neutrinoless double beta decay of 130Te > 1.3.1025 yr (90% C. L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130Te 2vo3p decay with a resulting half- life of T2 2. [7.9 :- 0.1 (stat.) :- 0.2 (syst.)] x 10(20) yr which is the most precise measurement of the half- life and compatible with previous results
The commissioning of the CUORE experiment: the mini-tower run
CUORE is a ton-scale experiment approaching the data taking phase in Gran Sasso National Laboratory. Its primary goal is to search for the neutrinoless double-beta decay in 130Te using 988 crystals of tellurim dioxide. The crystals are operated as bolometers at about 10 mK taking advantage of one of the largest dilution cryostat ever built. Concluded in March 2016, the cryostat commissioning consisted in a sequence of cool down runs each one integrating new parts of the apparatus. The last run was performed with the fully configured cryostat and the thermal load at 4 K reached the impressive mass of about 14 tons. During that run the base temperature of 6.3 mK was reached and maintained for more than 70 days. An array of 8 crystals, called mini-tower, was used to check bolometers operation, readout electronics and DAQ. Results will be presented in terms of cooling power, electronic noise, energy resolution and preliminary background measurements
Genetic determinants of risk in pulmonary arterial hypertension:international genome-wide association studies and meta-analysis
Background: Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods: We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings: A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13 × 10 –15 ) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65 × 10 –20 ) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69 × 10 –12 ; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation: This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding: UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR. </p
Please Put Stickers on Shirley Chisholm’s Grave: Assessing the Legacy of a Black Feminist Pioneer
Book Review: Walker, Religion and the Public Conscience: Ecumenical Civil Rights Work in Seattle, 1940–1960, by Barbara Winslow
- …
