5,518 research outputs found
Fabrication of composite fan blades using PMR A-type polyimide resin and graphite fiber reinforcement
PMR polyimides are safe, easy to handle, can be processed with relatively wide process controls, and offer excellent mechanical properties, with thermo-oxidative stability. Procedures, staging and cure schedules fully dense, crackfree, dimensionally controlled, complex structure: high tip speed fan blades 1.27 cm (0.5 in) thick
‘I went with what I always do…’:a qualitative analysis of ‘Cleggmania’ and vote choice in the 2010 British General Election
We use focus group transcripts from the innovative Qualitative Election Study of Britain dataset to provide insights into why ‘Cleggmania’ failed to translate into electoral success for the Liberal Democrats in 2010. Analyses conducted on participants’ vote choice stories indicate the effect of ‘Cleggmania’ was limited to strengthening the resolve of wavering Liberal Democrats. Long-time Labour and Conservative supporters who leaned Liberal Democrat before the election found their latent party identification made voting for a different party psychologically uncomfortable. Qualitative electoral research can advance our understanding of people’s voting calculus by analysing narratives for values, identity, utility maximizing, and constituency dynamics.</p
PMR polyimide/graphite fiber composite fan blades
Ultrahigh speed fan blades, designed in accordance with the requirements of an ultrahigh tip speed blade axial flow compressor, were fabricated from a high strength graphite fiber tow and a PMR polyimide resin. The PMR matrix was prepared by combining three monomeric reactants in methyl alcohol, and the solution was applied directly to the reinforcing fiber for subsequent in situ polymerization. Some of the molded blades were completely finished by secondary bonding of root pressure pads and an electroformed nickel leading edge sheath prior to final machining. The results of the spin testing of nine PMR fan blades are given. Prior to blade fabrication, heat resin tensile properties of the PMR resin were examined at four formulated molecular weight levels. Additionally, three formulated molecular weight levels were investigated in composite form with both a high modulus and a high strength fiber, both as-molded and postcured, in room temperature and 232 C transverse tensile, flexure and short beam shear. Mixed fiber orientation panels simulating potential blade constructions were also evaluated. Flexure tests, short beam shear tests, and tensile tests were conducted on these angle-plied laminates
Fiber reinforced PMR polyimide composites
Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices
Composite impact strength improvement through a fiber/matrix interphase
Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus
Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB
Context. The majority of stars that leave the main sequence are undergoing
extensive mass loss, in particular during the asymptotic giant branch (AGB)
phase of evolution. Observations show that the rate at which this phenomenon
develops differs highly from source to source, so that the time-integrated mass
loss as a function of the initial conditions (mass, metallicity, etc.) and of
the stage of evolution is presently not well understood. Aims. We are
investigating the mass loss history of AGB stars by observing the molecular and
atomic emissions of their circumstellar envelopes. Methods. In this work we
have selected two stars that are on the thermally pulsing phase of the AGB
(TP-AGB) and for which high quality data in the CO rotation lines and in the
atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon
star of the Irregular variability type, shows a complex CO line profile that
may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a
young (< 10^4 years) fast outflow at a rate of ~ 5 10^-7 Msol/yr. Intense HI
emission indicates a detached shell with 0.044 Msol of hydrogen. This shell
probably results from the slowing-down, by surrounding matter, of the same
long-lived wind observed in CO that has been active during ~ 6 10^5 years. On
the other hand, the carbon Mira V CrB is presently undergoing mass loss at a
rate of 2 10^-7 Msol/yr, but was not detected in HI. The wind is mostly
molecular, and was active for at most 3 10^4 years, with an integrated mass
loss of at most 6.5 10^-3 Msol. Conclusions. Although both sources are carbon
stars on the TP-AGB, they appear to develop mass loss under very different
conditions, and a high rate of mass loss may not imply a high integrated mass
loss.Comment: Accepted for publication in Astron. Astrophy
The COBE DIRBE Point Source Catalog
We present the COBE DIRBE Point Source Catalog, an all-sky catalog containing
infrared photometry in 10 bands from 1.25 microns to 240 microns for 11,788 of
the brightest near and mid-infrared point sources in the sky. Since DIRBE had
excellent temporal coverage (100 - 1900 independent measurements per object
during the 10 month cryogenic mission), the Catalog also contains information
about variability at each wavelength, including amplitudes of variation
observed during the mission. Since the DIRBE spatial resolution is relatively
poor (0.7 degrees), we have carefully investigated the question of confusion,
and have flagged sources with infrared-bright companions within the DIRBE beam.
In addition, we filtered the DIRBE light curves for data points affected by
companions outside of the main DIRBE beam but within the `sky' portion of the
scan. At high Galactic latitudes (|b| > 5 degrees), the Catalog contains
essentially all of the unconfused sources with flux densities greater than 90,
60, 60, 50, 90, and 165 Jy at 1.25, 2.2, 3.5, 4.9, 12, and 25 microns,
respectively, corresponding to magnitude limits of approximately 3.1, 2.6, 1.7,
1.3, -1.3, and -3.5. At longer wavelengths and in the Galactic Plane, the
completeness is less certain because of the large DIRBE beam and possible
contributions from extended emission. The Catalog also contains the names of
the sources in other catalogs, their spectral types, variability types, and
whether or not the sources are known OH/IR stars. We discuss a few remarkable
objects in the Catalog. [abridged]Comment: Accepted for publication in the Astrophysical Journal Supplement. The
full tables are available at http://www.etsu.edu/physics/bsmith/dirbe
Integration of patient-reported outcome measures with key clinical outcomes after immediate latissimus dorsi breast reconstruction and adjuvant treatment
Background: linical evidence on patient-reported outcome measures (PROMS) in breast reconstruction is lacking. The aim of this study was to evaluate PROMs in implant-assisted latissimus dorsi (LDI) or tissue-only autologous latissimus dorsi (ALD) flap reconstruction in relation to complications and adjuvant treatments.Methods: this was a prospective cohort study involving six UK centres. Eligible patients had primary early-stage breast cancer. The European Organization for Research and Treatment of Cancer quality-of-life questionnaire (QLQ)-C30 and QLQ-BR23, Functional Assessment of Cancer Therapy—Breast Cancer scale (FACT-B), Body Image Scale, and Hospital Anxiety and Depression Scale were completed before operation and at 3, 6 and 12 months after surgery.Results: a total of 182 patients (82 LDI and 100 ALD) were recruited between 2007 and 2010 with symptomatic (59·9 per cent) or screen-detected (39·6 per cent) cancers. Some 64·3 per cent had lymph node-negative disease; 30 per cent of the LDI group had radiotherapy, compared with 53·0 per cent in the ALD group (P = 0·004). Early complications up to 3 months after surgery were reported in 66 and 51·0 per cent of patients in the LDI and ALD groups respectively (P = 0·062) and long-term complications (4–12 months) in 48 and 45·0 per cent (P = 0·845). Role functioning and pain (P = 0·002 for both) were adversely affected in the ALD group compared with results in the LDI group, with no significant effects of radiotherapy on any health-related quality of life (HRQL). Chemotherapy and early complications adversely affected HRQL, which improved between 3 and 12 months after surgery (P < 0·010 for all).Conclusion: there is evidence of similar HRQL between types of latissimus dorsi breast reconstruction for up to a year after surgery. There appear to be no overarching effects for radiotherapy after mastectomy on the specific HRQL domains studied in the short term. The identification of variables that affect HRQL is important, including their integration into the analysis of PROM
Meltwater Intrusions Reveal Mechanisms for Rapid Submarine Melt at a Tidewater Glacier
Submarine melting has been implicated as a driver of glacier retreat and sea level rise, but to date melting has been difficult to observe and quantify. As a result, melt rates have been estimated from parameterizations that are largely unconstrained by observations, particularly at the near-vertical termini of tidewater glaciers. With standard coefficients, these melt parameterizations predict that ambient
melting (the melt away from subglacial discharge outlets) is negligible compared to discharge-driven melting for typical tidewater glaciers. Here, we present new data from LeConte Glacier, Alaska, that challenges this paradigm. Using autonomous kayaks, we observe ambient meltwater intrusions that are ubiquitous within 400 m of the terminus, and we provide the first characterization of their properties, structure, and distribution. Our results suggest that ambient melt rates are substantially higher (×100) than standard theory predicts and that ambient melting is a significant part of the total submarine melt flux. We explore modifications to the prevalent melt parameterization to provide a path forward for improved modeling of ocean-glacier interactions.This work was funded by NSF OPP Grants 1503910, 1504191, 1504288,
and 1504521 and National Geographic Grant CP4-171R-17. Additionally, this research was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) under award #NA18NWS4620043B. These observations would not be possible without the skilled engineering team who developed the autonomous kayaks—including Jasmine Nahorniak, June Marion, Nick McComb, Anthony Grana, and Corwin Perren—and also the Captain and crew of the M/V Amber Anne. We thank Donald Slater and an anonymous reviewer for valuable feedback that improved this manuscript. Data availability: All of the oceanographic data collected by ship and kayak have been archived with the National Centers for Environmental Information (Accession 0189574, https://accession.nodc.noaa.gov/ 0189574). The glacier data have been archived at the Arctic Data Center (https://doi.org/10.18739/A22G44).Ye
- …
