6 research outputs found
The `666' collaboration on OGLE transits: I. Accurate radius of the planets OGLE-TR-10b and OGLE-TR-56b with VLT deconvolution photometry
Transiting planets are essential to study the structure and evolution of
extra-solar planets. For that purpose, it is important to measure precisely the
radius of these planets. Here we report new high-accuracy photometry of the
transits of OGLE-TR-10 and OGLE-TR-56 with VLT/FORS1. One transit of each
object was covered in Bessel V and R filters, and treated with the
deconvolution-based photometry algorithm DECPHOT, to ensure accurate
millimagnitude light curves. Together with earlier spectroscopic measurements,
the data imply a radius of 1.22 +0.12-0.07 R_J for OGLE-TR-10b and 1.30 +- 0.05
R_J for OGLE-TR-56b. A re-analysis of the original OGLE photometry resolves an
earlier discrepancy about the radius of OGLE-TR-10. The transit of OGLE-TR-56
is almost grazing, so that small systematics in the photometry can cause large
changes in the derived radius. Our study confirms both planets as inflated hot
Jupiters, with large radii comparable to that of HD 209458 and at least two
other recently discovered transiting gas giants.Comment: Fundamental updates compared to previous version; accepted for
publication in Astronomy & Astrophysic
Establishment ofAzotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.)
Miniature Exoplanet Radial Velocity Array I: Design, Commissioning, and Early Photometric Results
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. In this article, we describe the design of MINERVA including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, CA, and their on-sky performance is validated. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b -- a known hot-Jupiter with an inflated radius and misaligned orbit. The facility is now in the process of being relocated to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona, and science operations will begin in 2015
