57 research outputs found
Proteomics of synapse
Large-scale phosphoproteome analysis on synaptosome and preparation of post-synaptic density (PSD) were investigated. It was found that protein phosphor is a common event in the synapse, which is consistent with the presence of diverse classes of kinases and phosphatases in the synapse. Synaptic proteomics analysis required the purification of subcellular organelles from the brain regions of interest. Multiple steps of discontinuous density gradient ultra-centrifugation were employed to enrich the distinct organelles. Two-dimensional gel electrophoresis was used to separate and quantify proteins, including post-translational modified forms, from synaptic structures. It was observed that proteomic analysis of the synaptic vesicle identified 36 proteins, including seven integral membrane proteins and vesicle regulatory proteins
Analysis of Synaptic Proteins in the Cerebrospinal Fluid as a New Tool in the Study of Inborn Errors of Neurotransmission
Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the
possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures
that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders
of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and
Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the
CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found
between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable
analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic
transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism.
Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases
Changes in muscle contractile characteristics and jump height following 24 days of unilateral lower limb suspension
We measured changes in maximal voluntary and electrically evoked torque and rate of torque development because of limb unloading. We investigated whether these changes during single joint isometric muscle contractions were related to changes in jump performance involving dynamic muscle contractions and several joints. Six healthy male subjects (21 ± 1 years) underwent 3 weeks of unilateral lower limb suspension (ULLS) of the right limb. Plantar flexor and knee extensor maximal voluntary contraction (MVC) torque and maximal rate of torque development (MRTD), voluntary activation, and maximal triplet torque (thigh; 3 pulses at 300 Hz) were measured next to squat jump height before and after ULLS. MVC of plantar flexors and knee extensors (MVCke) and triplet torque decreased by 12% (P = 0.012), 21% (P = 0.001) and 11% (P = 0.016), respectively. Voluntary activation did not change (P = 0.192). Absolute MRTD during voluntary contractions decreased for plantar flexors (by 17%, P = 0.027) but not for knee extensors (P = 0.154). Absolute triplet MRTD decreased by 17% (P = 0.048). The reduction in MRTD disappeared following normalization to MVC. Jump height with the previously unloaded leg decreased significantly by 28%. No significant relationships were found between any muscle variable and jump height (r < 0.48), but decreases in torque were (triplet, r = 0.83, P = 0.04) or tended to be (MVCke r = 0.71, P = 0.11) related to decreases in jump height. Thus, reductions in isometric muscle torque following 3 weeks of limb unloading were significantly related to decreases in the more complex jump task, although torque in itself (without intervention) was not related to jump performance
The cardiovascular and hypothalamus-pituitary-adrenal axis response to stress is controlled by glucocorticoid receptor sequence variants and promoter methylation
NT5E and FcGBP as key regulators of TGF-1-induced epithelial–mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer
Analysis of synaptic proteins in the cerebrospinal fluid as a new tool in the study of inborn errors of neurotransmission
Relationship between extensibility and collagen expression in immobilized rat skeletal muscle
Cyclic muscle twitch contraction inhibits immobilization-induced muscle contracture and fibrosis in rats
- …
