212 research outputs found
Day 10
This is a poem I wrote after visiting the supermarket right after classes closed on Taylor\u27s campus
Preaching a Sermon Series on Biblical Discipleship from the Gospel of Matthew at Church of the Open Door, Fayetteville, North Carolina
ABSTRACT
PREACHING A SERMON SERIES ON BIBLICAL DISCIPLESHIP
FROM THE GOSPEL OF MATTHEW AT CHURCH OF THE
OPEN DOOR, FAYETTEVILLE, NORTH CAROLINA
Jon Lewis Wixtrom, D.Min.
The Southern Baptist Theological Seminary, 2015
Faculty Supervisor: Dr. Robert L. Plummer
This project seeks to exhort the members of Church of the Open Door to passionate obedience to the discipleship calling and commissioning of Christ. Chapter 1 introduces Church of the Open Door and establishes the historical context necessitating this focused instruction. Chapter 2 provides the biblical and theological basis for Matthew’s recording of Jesus’ call and commission to a life discipleship. Chapter 3 provides the biblical and theological basis for Matthew’s recording of Jesus’ instruction on the cost of discipleship. Chapter 4 discusses the methodology of the project and details the exposition of the sermon series “Something to Die For.” Chapter 5 analyzes and evaluates the results of the project and includes theological and personal reflection on the project
Quantitative Analysis of X-ray Fluorescence Absorption and Emission for Thickness Determination of ALD-Grown Metal and Oxide Nanoscaled Films
This study describes the use of X-ray fluorescence spectroscopy (XRF) to determine the thickness of nanoscaled thin films of insulating oxides such as Al2O3, HfO2, and ZrO2, semiconducting oxides such as TiO2, ZnO, and metals like Pt, on silicon substrates synthesized by atomic layer deposition (ALD) technology. XRF thickness measurements were compared with the predicted layer thickness based on calculations from known ALD growth rates for each metal or metal oxide films. The ALD growth rates have been calibrated with TEM cross-sectional measurements of the resulting film thickness. The results showed good agreement between the two methods, indicating the XRF technique was successful. Quantitative XRF spectroscopy employing XRF absorption and emission line analysis has been demonstrated to be a powerful non-destructive tool for thickness determination of deposited high-k transition metal oxides and other technologically important nano-scaled thin films like Pt and other metal contacts and reveals new untapped application potential for XRF
Heavy metals in breast implant capsules and breast tissue: Findings from the systemic symptoms in women-biospecimen analysis study: Part 2
BACKGROUND: Breast Implant Illness (BII), as described in recent medical literature and by social media, describes a range of symptoms in patients with breast implants for which there are no physical findings or laboratory results that explain their symptoms.
OBJECTIVES: Part 2 of this study aims to determine whether heavy metals are present in the capsules around saline and silicone implants and if there are statistical differences in the type or level of these metals between women with or without symptoms. Demographic data was collected to investigate potential alternate sources of metals: inhaled, absorbed, or ingested.
METHODS: A prospective, blinded study enrolled 150 consecutive subjects divided equally into in three cohorts: (A) women with systemic symptoms they attribute to their implants who requested implant removal, (B) women with breast implants requesting removal or exchange who do not have symptoms they attribute to their implants, and (C) women undergoing cosmetic mastopexy who have never had any implanted medical device. Capsule tissue was removed from Cohort A and B for analysis of 22 heavy metals. Additionally, breast tissue was obtained from a control group with no previous exposure to any implanted medical device.
RESULTS: The study was performed between 2019-2021. Heavy metal content was compared between the capsule tissue from Cohort A and B. The only statistically significant differences identified in Cohort A were higher levels of arsenic and zinc, and lower levels of cobalt, manganese, silver, and tin. There were no elevated levels or statistically significant differences in the other metals tested between Cohorts A and B.
CONCLUSIONS: This study analyzes the metal content in capsules surrounding both saline and silicone breast implants. Heavy metals were also detected in the non-implant control group breast tissue, with some metals at numerically higher levels than either breast implant cohort. Smoking, gluten free diets, dietary supplements, and the presence of tattoos were all identified as statistically significant sources of arsenic and zinc in Cohort A. The risk of heavy metal toxicity should not be used as an indication for total capsulectomy if patients elect to remove their breast implants
Impact of capsulectomy type on post-explantation systemic symptom improvement: Findings from the ASERF systemic symptoms in Women-Biospecimen Analysis Study: Part 1
BACKGROUND: Breast Implant Illness (BII) is a term used to describe a variety of symptoms by patients with breast implants for which there are no abnormal physical or laboratory findings to explain their symptoms. There currently exists a difference of opinion among clinicians and patients concerning the diagnosis and treatment of patients self-reporting BII.
OBJECTIVES: The first aim of this study was to determine if there is a valid indication for en bloc capsulectomy in patients self-reporting BII and if the type of capsulectomy performed alters long-term symptom improvement. The second goal was to identify any clinical laboratory differences between the cohorts. This study was funded by the Aesthetic Surgery Education and Research Foundation (ASERF).
METHODS: A prospective blinded study enrolled 150 consecutive subjects divided equally into 3 cohorts: (A) women with systemic symptoms they attribute to their implants who requested implant removal; (B) women with breast implants requesting removal or exchange who do not have symptoms they attribute to their implants; and (C) women undergoing cosmetic mastopexy who have never had any implanted medical device. The subject\u27s baseline demographic data and a systemic symptoms survey, including PROMIS validated questionnaires, was obtained before surgery and at 3-6 weeks, 6 months, and 1 year. Blood was collected from all 3 cohorts and implant capsules were collected from Cohorts A and B.
RESULTS: 150 patients were enrolled between 2019-2021. Follow-up at 3-6 weeks for all 3 cohorts was between 98%-100%, 78%-98% at 6-months, and 1 year data is currently at 80%. The type of capsulectomy; intact total, total, or partial all showed similar symptom improvement with no statistical difference in the reduction of symptoms based on the type of capsulectomy.
CONCLUSIONS: This study addresses one of the most discussed questions by plastic surgeons, patients, their advocates, and social media. The findings show that patients who self-report BII demonstrate a statistically significant improvement in their symptoms after explantation and that this improvement persists for at least 6 months. This improvement in self-reported systemic symptoms was seen regardless of the type of capsulectomy performed
Microbes, histology, blood analysis, enterotoxins, and cytokines: Findings from the ASERF Systemic Symptoms in Women-Biospecimen Analysis Study: Part 3
BACKGROUND: There has been an increasing need to acquire rigorous scientific data to answer the concerns of physicians, patients, and the FDA regarding the self-reported illness identified as breast implant illness (BII). There are no diagnostic tests or specific laboratory values to explain the reported systemic symptoms described by these patients.
OBJECTIVES: The aim of this study was to determine if there are quantifiable laboratory findings that can be identified in blood, capsule tissue pathology, or microbes that differentiate women with systemic symptoms they attribute to their implants from 2 control groups.
METHODS: A prospective blinded study enrolled 150 subjects into 3 cohorts: (A) women with systemic symptoms they attribute to implants who requested implant removal; (B) women with breast implants requesting removal or exchange who did not have symptoms attributed to implants; and (C) women undergoing cosmetic mastopexy who have never had any implanted medical device. Capsule tissue underwent detailed analysis and blood was sent from all 3 cohorts to evaluate for markers of inflammation.
RESULTS: No significant histologic differences were identified between the cohorts, except there were more capsules with synovial metaplasia in the non-BII cohort. There was no statistical difference in thyroid-stimulating hormone, vitamin D levels, or complete blood count with differential between the cohorts. Next-generation sequencing revealed no statistically significant difference in positivity between Cohort A and B. Of the 12 cytokines measured, 3 cytokines, interleukin (IL)-17A, IL-13, and IL-22, were found to be significantly more often elevated in sera of subjects in Cohort A than in Cohorts B or C. The enterotoxin data demonstrated an elevation in immunoglobulin G (IgG) anti-Staphylococcus aureus enterotoxin A in Cohort A. There was no correlation between the presence of IgE or IgG anti-Staphylococcal antibody and a positive next-generation sequencing result.
CONCLUSIONS: This study adds to the current literature by demonstrating few identifiable biomedical markers to explain the systemic symptoms self-reported by patients with BII
Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.
Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass. Community studies should focus on air toxics expected to have adverse respiratory effects based on biological mechanisms, particularly irritant and immunological pathways to asthma onset and exacerbation
Recommended from our members
Photooxidative Generation of Dodecaborate-Based Weakly Coordinating Anions
Redox-active proanions of the type B_(12)(OCH_2Ar)_(12) [Ar = C_6F_5 (1), 4-CF_3C_6H_4 (2), 3,5-(CF_3)_2C_6H_3 (3)] are introduced in the context of an experimental and computational study of the visible-light-initiated polymerization of a family of styrenes. Neutral, air-stable proanions 1–3 were found to initiate styrene polymerization through single-electron oxidation under blue-light irradiation, resulting in polymers with number-average molecular weights (M_n) ranging from ∼6 to 100 kDa. Shorter polymer products were observed in the majority of experiments, except in the case of monomers containing 4-X (X = F, Cl, Br) substituents on the styrene monomer when polymerized in the presence of 1 in CH_2Cl_2. Only under these specific conditions are longer polymers (>100 kDa) observed, strongly supporting the formulation that reaction conditions significantly modulate the degree of ion pairing between the dodecaborate anion and cationic chain end. This also suggests that 1–3 behave as weakly coordinating anions (WCA) upon one-electron reduction because no incorporation of the cluster-based photoinitiators is observed in the polymeric products analyzed. Overall, this work is a conceptual realization of a single reagent that can serve as a strong photooxidant, subsequently forming a WCA
- …
