1,896 research outputs found

    Orbital Magnetic Ordering in Disordered Mesoscopic Systems

    Full text link
    We present some model calculations of persistent currents in disordered one- and two-dimensional mesoscopic systems. We use the tight-binding model and calculate numerically the currents in small systems for several values of disorder. Next we fit appropriate analytical formulae, and using them we find self- -sustaining currents and critical fields in larger, more realistic systems with different shapes of the Fermi surfaces.Comment: 16 pages, LaTeX, 8 figures, in print in J. Magn. Magn. Ma

    Vortex formation in a stirred Bose-Einstein condensate

    Full text link
    Using a focused laser beam we stir a Bose-Einstein condensate of 87Rb confined in a magnetic trap and observe the formation of a vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to four vortices are simultaneously present. We have also measured the lifetime of the single vortex state after turning off the stirring laser beam.Comment: 4 pages, 3 figure

    An Atom Faucet

    Get PDF
    We have constructed and modeled a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap, a thin laser beam extracts a continuous jet of cold rubidium atoms. In this setup, the extraction column that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. For detailed analysis, we present a simple 3D numerical simulation of the atomic motion in the presence of multiple saturating laser fields combined with an inhomogeneous magnetic field. At a pressure of PRb87=1×108P_{\rm Rb87}=1 \times 10^{-8} mbar, the moderate laser power of 10 mW per beam generates a jet of flux Φ=1.3×108\Phi =1.3\times 10^8 atoms/s with a mean velocity of 14 m/s and a divergence of <20<20 mrad.Comment: Submitted to EPJD. 1 TeX file (EPJ format), 7 picture

    Mixture of ultracold lithium and cesium atoms in an optical dipole trap

    Full text link
    We present the first simultaneous trapping of two different ultracold atomic species in a conservative trap. Lithium and cesium atoms are stored in an optical dipole trap formed by the focus of a CO2_2 laser. Techniques for loading both species of atoms are discussed and observations of elastic and inelastic collisions between the two species are presented. A model for sympathetic cooling of two species with strongly different mass in the presence of slow evaporation is developed. From the observed Cs-induced evaporation of Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected evaporation formulas and some postscript problem

    Persistent currents in carbon nanotubes

    Full text link
    Persistent currents driven by a static magnetic flux parallel to the carbon nanotube axis are investigated. Owing to the hexagonal symmetry of graphene the Fermi contour expected for a 2D-lattice reduces to two points. However the electron or hole doping shifts the Fermi energy upwards or downwards and as a result, the shape of the Fermi surface changes. Such a hole doping leading to the Fermi level shift of (more or less) 1eV has been recently observed experimentally. In this paper we show that the shift of the Fermi energy changes dramatically the persistent currents and discuss the electronic structure and possible currents for zigzag as well as armchair nanotubes.Comment: 8 text pages, 6 figures, to appear in Physics Letters
    corecore