1,762 research outputs found
Energy-corrected FEM and explicit time-stepping for parabolic problems
The presence of corners in the computational domain, in general, reduces the
regularity of solutions of parabolic problems and diminishes the convergence
properties of the finite element approximation introducing a so-called
"pollution effect". Standard remedies based on mesh refinement around the
singular corner result in very restrictive stability requirements on the
time-step size when explicit time integration is applied. In this article, we
introduce and analyse the energy-corrected finite element method for parabolic
problems, which works on quasi-uniform meshes, and, based on it, create fast
explicit time discretisation. We illustrate these results with extensive
numerical investigations not only confirming the theoretical results but also
showing the flexibility of the method, which can be applied in the presence of
multiple singular corners and a three-dimensional setting. We also propose a
fast explicit time-stepping scheme based on a piecewise cubic energy-corrected
discretisation in space completed with mass-lumping techniques and numerically
verify its efficiency
Adaptive control in rollforward recovery for extreme scale multigrid
With the increasing number of compute components, failures in future
exa-scale computer systems are expected to become more frequent. This motivates
the study of novel resilience techniques. Here, we extend a recently proposed
algorithm-based recovery method for multigrid iterations by introducing an
adaptive control. After a fault, the healthy part of the system continues the
iterative solution process, while the solution in the faulty domain is
re-constructed by an asynchronous on-line recovery. The computations in both
the faulty and healthy subdomains must be coordinated in a sensitive way, in
particular, both under and over-solving must be avoided. Both of these waste
computational resources and will therefore increase the overall
time-to-solution. To control the local recovery and guarantee an optimal
re-coupling, we introduce a stopping criterion based on a mathematical error
estimator. It involves hierarchical weighted sums of residuals within the
context of uniformly refined meshes and is well-suited in the context of
parallel high-performance computing. The re-coupling process is steered by
local contributions of the error estimator. We propose and compare two criteria
which differ in their weights. Failure scenarios when solving up to
unknowns on more than 245\,766 parallel processes will be
reported on a state-of-the-art peta-scale supercomputer demonstrating the
robustness of the method
Reduced basis methods for pricing options with the Black-Scholes and Heston model
In this paper, we present a reduced basis method for pricing European and
American options based on the Black-Scholes and Heston model. To tackle each
model numerically, we formulate the problem in terms of a time dependent
variational equality or inequality. We apply a suitable reduced basis approach
for both types of options. The characteristic ingredients used in the method
are a combined POD-Greedy and Angle-Greedy procedure for the construction of
the primal and dual reduced spaces. Analytically, we prove the reproduction
property of the reduced scheme and derive a posteriori error estimators.
Numerical examples are provided, illustrating the approximation quality and
convergence of our approach for the different option pricing models. Also, we
investigate the reliability and effectivity of the error estimators.Comment: 25 pages, 27 figure
- …
