1,625 research outputs found
Poetic metaphor and everyday metaphor: a corpus-based contrastive study of metaphors of SADNESS in poetry and non-literary discourse
Conceptual Metaphor Theory holds that metaphor is a ubiquitous phenomenon that frequently manifests itself in ordinary discourse rather than a rhetorical device characteristic of literary language. This makes the similarities and differences between poetic metaphors and everyday metaphors an interesting issue. Lakoff and Turner (1989) have claimed that poetic metaphors are based on everyday metaphors and what distinguishes the two is that the former combine and elaborate the latter in ways that go beyond the ordinary. A number of studies have lent support to this claim by illustrating how the meaning of a poem depends essentially on conceptual metaphors that pervade non-literary language and how poetic metaphors elaborate everyday metaphors creatively to achieve their “poeticality” (see, for instance, Deane 1995; Freeman 1995, 2002; Yu 2003). However, these studies have not answered the question of whether poems generally exploit the same range of conceptual metaphors to depict a particular target domain topic as the range that is commonly used to conceptualize it. The question is worth investigating not only because it can shed new light …published_or_final_versio
Simulating Dynamical Features of Escape Panic
One of the most disastrous forms of collective human behaviour is the kind of
crowd stampede induced by panic, often leading to fatalities as people are
crushed or trampled. Sometimes this behaviour is triggered in life-threatening
situations such as fires in crowded buildings; at other times, stampedes can
arise from the rush for seats or seemingly without causes. Tragic examples
within recent months include the panics in Harare, Zimbabwe, and at the
Roskilde rock concert in Denmark. Although engineers are finding ways to
alleviate the scale of such disasters, their frequency seems to be increasing
with the number and size of mass events. Yet, systematic studies of panic
behaviour, and quantitative theories capable of predicting such crowd dynamics,
are rare. Here we show that simulations based on a model of pedestrian
behaviour can provide valuable insights into the mechanisms of and
preconditions for panic and jamming by incoordination. Our results suggest
practical ways of minimising the harmful consequences of such events and the
existence of an optimal escape strategy, corresponding to a suitable mixture of
individualistic and collective behaviour.Comment: For related information see http://angel.elte.hu/~panic,
http://www.helbing.org, http://angel.elte.hu/~fij, and
http://angel.elte.hu/~vicse
Evolutionary distances in the twilight zone -- a rational kernel approach
Phylogenetic tree reconstruction is traditionally based on multiple sequence
alignments (MSAs) and heavily depends on the validity of this information
bottleneck. With increasing sequence divergence, the quality of MSAs decays
quickly. Alignment-free methods, on the other hand, are based on abstract
string comparisons and avoid potential alignment problems. However, in general
they are not biologically motivated and ignore our knowledge about the
evolution of sequences. Thus, it is still a major open question how to define
an evolutionary distance metric between divergent sequences that makes use of
indel information and known substitution models without the need for a multiple
alignment. Here we propose a new evolutionary distance metric to close this
gap. It uses finite-state transducers to create a biologically motivated
similarity score which models substitutions and indels, and does not depend on
a multiple sequence alignment. The sequence similarity score is defined in
analogy to pairwise alignments and additionally has the positive semi-definite
property. We describe its derivation and show in simulation studies and
real-world examples that it is more accurate in reconstructing phylogenies than
competing methods. The result is a new and accurate way of determining
evolutionary distances in and beyond the twilight zone of sequence alignments
that is suitable for large datasets.Comment: to appear in PLoS ON
Regional differences in prostaglandin E₂ metabolism in human colorectal cancer liver metastases
Background: Prostaglandin (PG) E₂ plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGE₂ catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGE₂ content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGE₂ in human CRC cells in vitro. Methods: Tissue from the periphery and centre of 20 human CRCLM was analysed for PGE₂ levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) β. Results: PGE₂ levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGE₂. Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo.Conclusions: There is significant intra-tumoral heterogeneity in PGE₂ content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGE₂ metabolism should be targeted for novel treatment of advanced CRC
Mechanisms controlling anaemia in Trypanosoma congolense infected mice.
Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection
Global Assemblages, Resilience, and Earth Stewardship in the Anthropocene
In this paper, we argue that the Anthropocene is an epoch characterized not only by the anthropogenic dominance of the Earth\u27s ecosystems but also by new forms of environmental governance and institutions. Echoing the literature in political ecology, we call these new forms of environmental governance “global assemblages”. Socioecological changes associated with global assemblages disproportionately impact poorer nations and communities along the development continuum, or the “Global South”, and others who depend on natural resources for subsistence. Although global assemblages are powerful mechanisms of socioecological change, we show how transnational networks of grassroots organizations are able to resist their negative social and environmental impacts, and thus foster socioecological resilience
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Subcellular fractionation method to study endosomal trafficking of Kaposi’s sarcoma-associated herpesvirus
Background
Virus entry involves multiple steps and is a highly orchestrated process on which successful infection collectively depends. Entry processes are commonly analyzed by monitoring internalized virus particles via Western blotting, polymerase chain reaction, and imaging techniques that allow scientist to track the intracellular location of the pathogen. Such studies have provided abundant direct evidence on how viruses interact with receptor molecules on the cell surface, induce cell signaling at the point of initial contact with the cell to facilitate internalization, and exploit existing endocytic mechanisms of the cell for their ultimate infectious agenda. However, there is dearth of knowledge in regards to trafficking of a virus via endosomes. Herein, we describe an optimized laboratory procedure to isolate individual organelles during different stages of endocytosis by performing subcellular fractionation. This methodology is established using Kaposi’s sarcoma-associated herpesvirus (KSHV) infection of human foreskin fibroblast (HFF) cells as a model. With KSHV and other herpesviruses alike, envelope glycoproteins have been widely reported to physically engage target cell surface receptors, such as integrins, in interactions leading to entry and subsequent infection.
Results
Subcellular fractionation was used to isolate early and late endosomes (EEs and LEs) by performing a series of centrifugations steps. Specifically, a centrifugation step post-homogenization was utilized to obtain the post-nuclear supernatant containing intact intracellular organelles in suspension. Successive fractionation via sucrose density gradient centrifugation was performed to isolate specific organelles including EEs and LEs. Intracellular KSHV trafficking was directly traced in the isolated endosomal fractions. Additionally, the subcellular fractionation approach demonstrates a key role for integrins in the endosomal trafficking of KSHV. The results obtained from fractionation studies corroborated those obtained by traditional imaging studies.
Conclusions
This study is the first of its kind to employ a sucrose flotation gradient assay to map intracellular KSHV trafficking in HFF cells. We are confident that such an approach will serve as a powerful tool to directly study intracellular trafficking of a virus, signaling events occurring on endosomal membranes, and dynamics of molecular events within endosomes that are crucial for uncoating and virus escape into the cytosol
Production and transfer of energy and information in Hamiltonian systems
We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an ?experimental? implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented
- …
