3,853 research outputs found
Optimal flexibility for conformational transitions in macromolecules
Conformational transitions in macromolecular complexes often involve the
reorientation of lever-like structures. Using a simple theoretical model, we
show that the rate of such transitions is drastically enhanced if the lever is
bendable, e.g. at a localized "hinge''. Surprisingly, the transition is fastest
with an intermediate flexibility of the hinge. In this intermediate regime, the
transition rate is also least sensitive to the amount of "cargo'' attached to
the lever arm, which could be exploited by molecular motors. To explain this
effect, we generalize the Kramers-Langer theory for multi-dimensional barrier
crossing to configuration dependent mobility matrices.Comment: 4 pages, 4 figure
Kinetic Accessibility of Buried DNA Sites in Nucleosomes
Using a theoretical model for spontaneous partial DNA unwrapping from
histones, we study the transient exposure of protein-binding DNA sites within
nucleosomes. We focus on the functional dependence of the rates for site
exposure and reburial on the site position, which is measurable experimentally
and pertinent to gene regulation. We find the dependence to be roughly
described by a random walker model. Close inspection reveals a surprising
physical effect of flexibility-assisted barrier crossing, which we characterize
within a toy model, the "semiflexible Brownian rotor."Comment: final version as published in Phys. Rev. Let
Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects
We derive the post-Newtonian next-to-leading order conservative spin-orbit
and spin(a)-spin(b) gravitational interaction Hamiltonians for arbitrary many
compact objects. The spin-orbit Hamiltonian completes the knowledge of
Hamiltonians up to and including 2.5PN for the general relativistic three-body
problem. The new Hamiltonians include highly nontrivial three-body
interactions, in contrast to the leading order consisting of two-body
interactions only. This may be important for the study of effects like Kozai
resonances in mergers of black holes with binary black holes.Comment: 13 pages, 1 Mathematica source file, v2: submitted version, v3:
published version, some minor correction
Solving the radial Dirac equations: a numerical odyssey
We discuss, in a pedagogical way, how to solve for relativistic wave
functions from the radial Dirac equations. After an brief introduction, in
Section II we solve the equations for a linear Lorentz scalar potential,
V_s(r), that provides for confinement of a quark. The case of massless u and d
quarks is treated first, as these are necessarily quite relativistic. We use an
iterative procedure to find the eigenenergies and the upper and lower component
wave functions for the ground state and then, later, some excited states.
Solutions for the massive quarks (s, c, and b) are also presented. In Section
III we solve for the case of a Coulomb potential, which is a time-like
component of a Lorentz vector potential, V_v(r). We re-derive, numerically, the
(analytically well-known) relativistic hydrogen atom eigenenergies and wave
functions, and later extend that to the cases of heavier one-electron atoms and
muonic atoms. Finally, Section IV finds solutions for a combination of the V_s
and V_v potentials. We treat two cases. The first is one in which V_s is the
linear potential used in Sec. II and V_v is Coulombic, as in Sec. III. The
other is when both V_s and V_v are linearly confining, and we establish when
these potentials give a vanishing spin-orbit interaction (as has been shown to
be the case in quark models of the hadronic spectrum).Comment: 39 pages (total), 23 figures, 2 table
A MUSE map of the central Orion Nebula (M 42)
We present a new integral-field spectroscopic dataset of the central part of
the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We
reduced the data with the public MUSE pipeline. The output products are two
FITS cubes with a spatial size of ~5.9'x4.9' (corresponding to ~0.76 pc x 0.63
pc) and a contiguous wavelength coverage of 4595...9366 Angstrom, spatially
sampled at 0.2". We provide two versions with a sampling of 1.25 Angstrom and
0.85 Angstrom in dispersion direction. Together with variance cubes these files
have a size of 75 and 110 GiB on disk. They represent one of the largest
integral field mosaics to date in terms of information content. We make them
available for use in the community. To validate this dataset, we compare world
coordinates, reconstructed magnitudes, velocities, and absolute and relative
emission line fluxes to the literature and find excellent agreement. We derive
a two-dimensional map of extinction and present de-reddened flux maps of
several individual emission lines and of diagnostic line ratios. We estimate
physical properties of the Orion Nebula, using the emission line ratios [N II]
and [S III] (for the electron temperature ) and [S II] and [Cl III] (for
the electron density ), and show two-dimensional images of the velocity
measured from several bright emission lines.Comment: Resubmitted to A&A after incorporating referee comments; access to
full dataset via http://muse-vlt.eu/science/data-release
In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli
Urinary tract infection (UTI) is one of the most prevalent infections in humans. In ≥80% of cases, the etiologic agents are strains of uropathogenic Escherichia coli (UPEC), which commonly reside in the gastrointestinal tract. Lactobacilli have been shown to prevent UTI reoccurrence by restoring the urogenital microbiota when administered vaginally or orally. The goal of this study was to determine if commercial probiotic Lactobacillus spp. reduce or clear UPEC in vitro. Results show that it is likely that lactobacilli may, in addition to restoring a healthy urogenital microbiota through acidification of their environment, also displace adhering UPEC and cause a reduction of infectio
Helping Contemporary People use Historic Liturgy
This project proposes that contemporary people need help understanding and utilizing historic liturgy. It shows how historic liturgy is contemporary by nature, and can be used in a modern and relevant way. Educational tools were developed for use in both the worship and classroom settings. Survey results provide information toward tool development and effectiveness. The result of the project and its implementation in a parish setting waste elimination of the request for a contemporary worship from those exposed to the project tools
- …
