443 research outputs found
A line-binned treatment of opacities for the spectra and light curves from neutron star mergers
The electromagnetic observations of GW170817 were able to dramatically
increase our understanding of neutron star mergers beyond what we learned from
gravitational waves alone. These observations provided insight on all aspects
of the merger from the nature of the gamma-ray burst to the characteristics of
the ejected material. The ejecta of neutron star mergers are expected to
produce such electromagnetic transients, called kilonovae or macronovae.
Characteristics of the ejecta include large velocity gradients, relative to
supernovae, and the presence of heavy -process elements, which pose
significant challenges to the accurate calculation of radiative opacities and
radiation transport. For example, these opacities include a dense forest of
bound-bound features arising from near-neutral lanthanide and actinide
elements. Here we investigate the use of fine-structure, line-binned opacities
that preserve the integral of the opacity over frequency. Advantages of this
area-preserving approach over the traditional expansion-opacity formalism
include the ability to pre-calculate opacity tables that are independent of the
type of hydrodynamic expansion and that eliminate the computational expense of
calculating opacities within radiation-transport simulations. Tabular opacities
are generated for all 14 lanthanides as well as a representative actinide
element, uranium. We demonstrate that spectral simulations produced with the
line-binned opacities agree well with results produced with the more accurate
continuous Monte Carlo Sobolev approach, as well as with the commonly used
expansion-opacity formalism. Additional investigations illustrate the
convergence of opacity with respect to the number of included lines, and
elucidate sensitivities to different atomic physics approximations, such as
fully and semi-relativistic approaches.Comment: 27 pages, 22 figures. arXiv admin note: text overlap with
arXiv:1702.0299
The first direct double neutron star merger detection: implications for cosmic nucleosynthesis
The astrophysical r-process site where about half of the elements heavier
than iron are produced has been a puzzle for several decades. Here we discuss
the role of neutron star mergers (NSMs) in the light of the first direct
detection of such an event in both gravitational (GW) and electromagnetic (EM)
waves. We analyse bolometric and NIR lightcurves of the first detected double
neutron star merger and compare them to nuclear reaction network-based
macronova models. The slope of the bolometric lightcurve is consistent with the
radioactive decay of neutron star ejecta with (but not
larger), which provides strong evidence for an r-process origin of the
electromagnetic emission. This rules out in particular "nickel winds" as major
source of the emission. We find that the NIR lightcurves can be well fitted
either with or without lanthanide-rich ejecta. Our limits on the ejecta mass
together with estimated rates directly confirm earlier purely theoretical or
indirect observational conclusions that double neutron star mergers are indeed
a major site of cosmic nucleosynthesis. If the ejecta mass was {\em typical},
NSMs can easily produce {\em all} of the estimated Galactic r-process matter,
and --depending on the real rate-- potentially even more. This could be a hint
that the event ejected a particularly large amount of mass, maybe due to a
substantial difference between the component masses. This would be compatible
with the mass limits obtained from the GW-observation. The recent observations
suggests that NSMs are responsible for a broad range of r-process nuclei and
that they are at least a major, but likely the dominant r-process site in the
Universe.Comment: 11 pages, 8 figures; accepted for A \&
Infrared emission from kilonovae: the case of the nearby short hard burst GRB 160821B
We present constraints on Ks-band emission from one of the nearest short hard
gamma-ray bursts, GRB 160821B, at z=0.16, at three epochs. We detect a reddened
relativistic afterglow from the jetted emission in the first epoch but do not
detect any excess kilonova emission in the second two epochs. We compare upper
limits obtained with Keck I/MOSFIRE to multi-dimensional radiative transfer
models of kilonovae, that employ composition-dependent nuclear heating and LTE
opacities of heavy elements. We discuss eight models that combine toroidal
dynamical ejecta and two types of wind and one model with dynamical ejecta
only. We also discuss simple, empirical scaling laws of predicted emission as a
function of ejecta mass and ejecta velocity. Our limits for GRB 160821B
constrain the ejecta mass to be lower than 0.03 Msun for velocities greater
than 0.1c. At the distance sensitivity range of advanced LIGO, similar
ground-based observations would be sufficiently sensitive to the full range of
predicted model emission including models with only dynamical ejecta. The color
evolution of these models shows that I-K color spans 7--16 mag, which suggests
that even relatively shallow infrared searches for kilonovae could be as
constraining as optical searches.Comment: Accepted for Publication in Astrophysical Journal Letter
Composition Effects on Kilonova Spectra and Light Curves: I
The merger of neutron star binaries is believed to eject a wide range of
heavy elements into the universe. By observing the emission from this ejecta,
scientists can probe the ejecta properties (mass, velocity and composition
distributions). The emission (a.k.a. kilonova) is powered by the radioactive
decay of the heavy isotopes produced in the merger and this emission is
reprocessed by atomic opacities to optical and infra-red wavelengths.
Understanding the ejecta properties requires calculating the dependence of this
emission on these opacities. The strong lines in the optical and infra-red in
lanthanide opacities have been shown to significantly alter the light-curves
and spectra in these wavelength bands, arguing that the emission in these
wavelengths can probe the composition of this ejecta. Here we study variations
in the kilonova emission by varying individual lanthanide (and the actinide
uranium) concentrations in the ejecta. The broad forest of lanthanide lines
makes it difficult to determine the exact fraction of individual lanthanides.
Nd is an exception. Its opacities above 1 micron are higher than other
lanthanides and observations of kilonovae can potentially probe increased
abundances of Nd. Similarly, at early times when the ejecta is still hot (first
day), the U opacity is strong in the 0.2-1 micron wavelength range and kilonova
observations may also be able to constrain these abundances
- …
