22 research outputs found
Etiopathogenic features of acne vulgaris
Acne vulgaris is one of the most frequent dermatoses in the general population. Numerous scientific articles are available on acne, mostly relating to its etiopathogeny. This notwithstanding, the large amount of scientific information generated by works on acne vulgaris has made it difficult to converge knowledge on its etiopathogeny into a single understanding. Therefore, this review has been proposed to analyze the four classic mechanisms of this dermatosis (sebum production, follicular hyperkeratinization, bacterial colonization and glandular inflammation), as well as its secondary mechanism, namely hormonal mediation.A acne vulgar é uma das dermatoses mais freqüentes na população em geral. Encontra-se na literatura grande número de trabalhos científicos referentes sobretudo a sua etiopatogenia. No entanto, dado o grande número de informações geradas a respeito, dificilmente consegue-se reuni-las em entendimento comum. Esta revisão literária foi proposta a fim de abordar os mecanismos etiopatogênicos clássicos da acne vulgar (produção sebácea, hiperqueratinização folicular, colonização bacteriana folicular e inflamação glandular) e o mecanismo coadjuvante principal, a influência hormonal.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Depto. de DermatologiaPontifícia Universidade Católica de Campinas Hospital e Maternidade Celso Pierro Serviço de DermatologiaUNIFESP, EPM, Depto. de DermatologiaSciEL
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
