894 research outputs found
Method for reducing snap in magnetic amplifiers
Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current
Theory for Phase Transitions in Insulating Vanadium Oxide
We show that the recently proposed S=2 bond model with orbital degrees of
freedom for insulating VO not only explains the anomalous magnetic
ordering, but also other mysteries of the magnetic phase transition. The model
contains an additional orbital degree of freedom that exhibits a zero
temperature quantum phase transtion in the Ising universality class.Comment: 5 pages, 2 figure
X-Ray Resonant Scattering as a Direct Probe of Orbital Ordering in Transition-Metal Oxides
X-ray resonant scattering at the K-edge of transition metal oxides is shown
to measure the orbital order parameter, supposed to accompany magnetic ordering
in some cases. Virtual transitions to the 3d-orbitals are quadrupolar in
general. In cases with no inversion symmetry, such as VO, treated in
detail here, a dipole component enhances the resonance. Hence, we argue that
the detailed structure of orbital order in VO is experimentally
accessible.Comment: LaTex using RevTex, 4 pages and two included postscript figure
Ground State and Excitations of Spin Chain with Orbital Degeneracy
The one dimensional Heisenberg model in the presence of orbital degeneracy is
studied at the SU(4) symmetric viewpoint by means of Bethe ansatz. Following
Sutherland's previous work on an equivalent model, we discuss the ground state
and the low-lying excitations more extensively in connection to the spin
systems with orbital degeneracy. We show explicitly that the ground state is a
SU(4) singlet. We study the degeneracies of the elementary excitations and the
spectra of the generalized magnons consisting of these excitations. We also
discuss the complex 2-strings in the context of the Bethe ansatz solutions.Comment: Revtex, 9 pages, 3 figures; typos correcte
Orbitally Degenerate Spin-1 Model for Insulating V2O3
Motivated by recent neutron, X-ray absorption and resonant scattering
experiments, we revisit the electronic structure of V2O3. We propose a model in
which S=1 V3+ ions are coupled in the vertical V-V pairs forming two-fold
orbitally degenerate configurations with S=2. Ferro-orbital ordering of the V-V
pairs gives a description which is consistent with all experiments in the
antiferromagnetic insulating phase.Comment: 4 pages, including three figure
Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V_2O_3
Magnetic correlations in all four phases of pure and doped vanadium
sesquioxide V_2O_3 have been examined by magnetic thermal neutron scattering.
While the antiferromagnetic insulator can be accounted for by a Heisenberg
localized spin model, the long range order in the antiferromagnetic metal is an
incommensurate spin-density-wave, resulting from a Fermi surface nesting
instability. Spin dynamics in the strongly correlated metal are dominated by
spin fluctuations in the Stoner electron-hole continuum. Furthermore, our
results in metallic V_2O_3 represent an unprecedentedly complete
characterization of the spin fluctuations near a metallic quantum critical
point, and provide quantitative support for the SCR theory for itinerant
antiferromagnets in the small moment limit. Dynamic magnetic correlations for
energy smaller than k_BT in the paramagnetic insulator carry substantial
magnetic spectral weight. However, the correlation length extends only to the
nearest neighbor distance. The phase transition to the antiferromagnetic
insulator introduces a sudden switching of magnetic correlations to a different
spatial periodicity which indicates a sudden change in the underlying spin
Hamiltonian. To describe this phase transition and also the unusual short range
order in the paramagnetic state, it seems necessary to take into account the
orbital degrees of freedom associated with the degenerate d-orbitals at the
Fermi level in V_2O_3.Comment: Postscript file, 24 pages, 26 figures, 2 tables, accepted by Phys.
Rev.
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
A Search for Jet Handedness in Hadronic Decays
We have searched for signatures of polarization in hadronic jets from decays using the ``jet handedness'' method. The polar angle
asymmetry induced by the high SLC electron-beam polarization was used to
separate quark jets from antiquark jets, expected to be left- and
right-polarized, respectively. We find no evidence for jet handedness in our
global sample or in a sample of light quark jets and we set upper limits at the
95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing
power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
- …
