222 research outputs found

    Dynamic assessment of exposure to air pollution using mobile phone data

    Get PDF
    Background: Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments. Methods: In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach). Results: The mean exposure to NO2 increases with 1.27 mu g/m(3) (4.3 %) during the week and with 0.12 mu g/m(3) (0.4 %) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations. Conclusions: It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones)

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    FAIRMODE Intercomparison exercise - Dataset to assess the area of representativeness of Air Quality Monitoring Stations

    Get PDF
    A feasibility study for organizing an intercomparison exercise (IE) of the methods used for estimating of the area of representativeness of the Air Quality Monitoring Stations (SR) in Europe has been carried out. It showed that it should be possible to compare the extent of SR determined by the different methods. Moreover, at the FAIRMODE-Aveiro meeting in 2015, the participants agreed to carry out the intercomparison exercise assessing the SR estimates for PM10 and NO2 at one traffic station, and for PM10, NO2 and O3 at two urban background stations. This report presents a dataset suitable for the FAIRMODE IE of the area of representativeness of Air Quality Monitoring Stations in the urban area of Antwerp (Belgium) for the year 2012. Three monitoring stations, Borgerhout-Straatkant, Antwerpen-Linkeroever and Schoten, have been selected for the evaluation. The dataset includes the model results for interpolated annual means on a fine regular grid, hourly time series at a number of 341 virtual receptor points to which random noise have been added, data from measurements of the Antwerp automatic monitoring stations, individual sampling campaigns, emissions, traffic, population density, building information, gridded CORINE land cover data, a short summary of PM10 speciated data and daily time profiles for traffic.JRC.C.5-Air and Climat

    Sensitivity analyses regarding NO2 exposure assessment and health impacts at a European scale

    Get PDF
    Currently, no adequate methodology exists to assess the NO2 health impacts at an EU-wide level. To a large extent this is attributed to the level of detail required in the NO2 concentration assessment at EU-level due to the strong spatial gradients for NO2 around roads. In this contribution we present a sensitivity analysis of the major sources of uncertainty in such an EU-wide health impact assessment for NO2. We do this by means of a number of bottom-up NO2 assessment maps contributed through the FAIRMODE composite mapping platform. We investigate the impact of the spatial resolution of the NO2 assessment, the available dose response curves and a number of ancillary datasets such as gridded population. We find that the largest source of uncertainty is found in the divergence between the different CRF’s available, in particular the choice of a ‘cut-off’ or ‘threshold’. For some cities, such as London, the difference is relatively small. However, the difference for smaller cities, such as Klagenfurt can go up to a factor of 6. Spatial resolution of the air quality maps and population maps is an important factor and depending on the concentration response function, the sensitivity is stronger. This work has been performed in the framework of the DG-ENV service contract 070201/2015/SER/717473/C.3, the conclusions of which contributed to the development of an EU-wide high resolution NO2 exposure assessment methodology.</p

    Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    Get PDF
    BACKGROUND: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. OBJECTIVES: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. METHODS: Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM(10) in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway analysis was performed using Gene Set Enrichment Analysis. Average daily PM(2.5) and PM(10) exposures over 2-years were estimated for each participant’s residential address using spatiotemporal interpolation in combination with a dispersion model. RESULTS: Average long-term PM(10) was 25.9 (± 5.4) and 23.7 (± 2.3) μg/m(3) in the discovery and validation cohorts, respectively. In discovery analysis, associations between PM(10) and the expression of individual genes differed by sex. In the validation cohort, long-term PM(10) was associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p = 0.053) in women. AKAP6 and LIMK1 were significantly associated with PM(10) in women, although associations differed in direction between the discovery and validation cohorts. Expression of the eight candidate genes in the discovery cohort differentiated between validation cohort participants with high versus low PM(10) exposure (area under the receiver operating curve = 0.92; 95% CI: 0.85, 1.00; p = 0.0002 in men, 0.86; 95% CI: 0.76, 0.96; p = 0.004 in women). CONCLUSIONS: Expression of the sex-specific candidate genes identified in the discovery population predicted PM(10) exposure in an independent cohort of adults from the same area. Confirmation in other populations may further support this as a new approach for exposure assessment, and may contribute to the discovery of molecular mechanisms for PM-induced health effects. CITATION: Vrijens K, Winckelmans E, Tsamou M, Baeyens W, De Boever P, Jennen D, de Kok TM, Den Hond E, Lefebvre W, Plusquin M, Reynders H, Schoeters G, Van Larebeke N, Vanpoucke C, Kleinjans J, Nawrot TS. 2017. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women. Environ Health Perspect 125:660–669; http://dx.doi.org/10.1289/EHP37

    Projected heat-related mortality under climate change in the metropolitan area of Skopje

    Get PDF
    Abstract Background Excessive summer heat is a serious environmental health problem in Skopje, the capital and largest city of the former Yugoslav Republic of Macedonia. This paper attempts to forecast the impact of heat on mortality in Skopje in two future periods under climate change and compare it with a historical baseline period. Methods After ascertaining the relationship between daily mean ambient air temperature and daily mortality in Skopje, we modelled the evolution of ambient temperatures in the city under a Representative Concentration Pathway scenario (RCP8.5) and the evolution of the city population in two future time periods: 2026–2045 and 2081–2100, and in a past time period (1986–2005) to serve as baseline for comparison. We then calculated the projected average annual mortality attributable to heat in the absence of adaptation or acclimatization during those time windows, and evaluated the contribution of each source of uncertainty on the final impact. Results Our estimates suggest that, compared to the baseline period (1986–2005), heat-related mortality in Skopje would more than double in 2026–2045, and more than quadruple in 2081–2100. When considering the impact in 2081–2100, sampling variability around the heat–mortality relationship and climate model explained 40.3 and 46.6 % of total variability. Conclusion These results highlight the importance of a long-term perspective in the public health prevention of heat exposure, particularly in the context of a changing climate

    Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Get PDF
    BACKGROUND: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. METHODS: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE) birth cohort, which enrols pairs of mothers and neonates (singleton births only) at the East-Limburg Hospital (Genk, Belgium). Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation) and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1). We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5), black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort). FINDINGS: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001) and black carbon (r=0·33, p<0·0001), but not NO2. Promoter methylation was positively associated with PM2·5 in APEX1 (7·34%, 95% CI 0·52 to 14·16, p=0·009), OGG1 (13·06, 3·88 to 22·24, p=0·005), ERCC4 (16·31%, 5·43 to 27·18, p=0·01), and p53 (10·60%, 4·46 to 16·74, p=0·01), whereas promoter methylation of DAPK1 (-12·92%, -22·35 to -3·49, p=0·007) was inversely associated with PM2·5 exposure. Black carbon exposure was associated with elevated promoter methylation in APEX1 (9·16%, 4·06 to 14·25, p=0·01) and ERCC4 (27·56%, 17·58 to 37·55, p<0·0001). Promoter methylation was not associated with pollutant exposure in PARP1 and ERCC1, and NO2 exposure was not associated with methylation in any of the genes studied. INTERPRETATION: Transplacental in-utero exposure to particulate matter is associated with an increased overall placental mutation rate (as measured with Alu), which occurred in concert with epigenetic alterations in key DNA repair and tumour suppressor genes. Our results suggest that exposure to air pollution can induce changes to fetal and neonatal DNA repair capacity. Future studies will be essential to elucidate whether these changes persist and have a role in carcinogenic insults later in life. The work is supported by the European Research Council (ERC-2012-StG.310898 and ERC-2011-StG. 282413) and by the Flemish Scientific Fund (FWO,G073315N/G082317N)

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy

    Get PDF
    Background: Exposure to air pollution during pregnancy has been associated with adverse pregnancy outcomes in studies worldwide, other studies have described beneficial effects of residential greenspace on pregnancy outcomes. The biological mechanisms that underlie these associations are incompletely understood. A biological stress response, which implies release of cortisol, may underlie associations of air pollution exposure and access to neighborhood greenspaces with health. Methods: We explored residential exposure to air pollution and residential access to neighborhood greenspaces in relation to hair cortisol concentrations of participants in a prospective pregnancy cohort study in Flanders, Belgium. Hair samples were collected at the end of the second pregnancy trimester (n = 133) and shortly after delivery (n = 81). Cortisol concentrations were measured in 3-cm scalp-near hair sections, to reflect second and third pregnancy trimester cortisol secretion. We estimated long-term (3 months before sampling) residential exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and black carbon (BC), assessed residential distance to major roads and residential access to neighborhood greenspaces (NHGS). Associations between residential exposures and hair cortisol concentrations were studied using linear regression models while adjusting for season of sampling. Results: Three-month mean residential NO2 and BC concentrations were positively associated with third pregnancy trimester hair cortisol concentrations (p = 0.008 and p = 0.017). Access to a large NHGS (10 ha or more within 800 m from residence) was negatively associated with third trimester hair cortisol concentrations (p = 0.019). Access to a large NHGS significantly moderated the association between residential proximity to major roads and second trimester hair cortisol concentrations (p = 0.021). Residential distance to major roads was negatively associated with second trimester hair cortisol concentrations of participants without access to a large NHGS (p = 0.003). The association was not significant for participants with access to a large NHGS. The moderation tended towards significance in the third pregnancy trimester (p &lt; 0.10). Conclusions: Our findings suggest a positive association between long-term residential exposure to air pollution and biological stress during pregnancy, residential access to neighborhood greenspaces may moderate the association. Further research is needed to confirm our results. Trial registration: The IPANEMA study is registered under number NCT02592005 at clinicaltrials.gov.</p
    corecore