249,926 research outputs found
The Electroweak Chiral Lagrangian and New Precision Measurements
A revised and complete list of the electroweak chiral lagrangian operators up
to dimension-four is provided. The connection of these operators to the ,
and parameters and the parameters describing the triple gauge boson
vertices and is made, and the size of these parameters from
new heavy physics is estimated using a one flavor-doublet model of heavy
fermions. The coefficients of the chiral lagrangian operators are also computed
in this model.Comment: 21 pages, LaTex, 2 figures (not included), YCTP-P7-9
White dwarf masses in magnetic cataclysmic variables: Multi-temperature fits to Ginga data
One method of obtaining the mass of the white dwarf in magnetic cataclysmic variables (mCVs) is through their hard X-ray spectra. However, previous mass estimates using this method give lower limits because the temperature of the plasma in the post-shock region (where the hard X-rays are emitted) is lower than the temperature of the shock itself. In AM Her systems, the additional cooling of the post-shock plasma by cyclotron emission will further lower the derived mass. Here we present estimates of the masses of the white dwarf in 13 mCVs derived using Ginga data and a model in which X-rays are emitted from a multi-temperature emission region with the appropriate temperature and density profile. We include in the model reflection from the surface of the white dwarf and a partially ionized absorber. We are able to achieve good fits to the data. We compare the derived masses with previous estimates and the masses for larger samples of isolated white dwarfs and those in CVs
Transition Form Factor with Tensor Current within the Factorization Approach
In the paper, we apply the factorization approach to deal with the
transition form factor with tensor current in the large recoil
regions. Main uncertainties for the estimation are discussed and we obtain
, where the first error is caused by the
uncertainties from the pionic wave functions and the second is from that of the
B-meson wave functions. This result is consistent with the light-cone sum rule
results obtained in the literature.Comment: 8 pages, 4 figures, references adde
Novel dynamical effects and glassy response in strongly correlated electronic system
We find an unconventional nucleation of low temperature paramagnetic metal
(PMM) phase with monoclinic structure from the matrix of high-temperature
antiferromagnetic insulator (AFI) phase with tetragonal structure in strongly
correlated electronic system . Such unconventional
nucleation leads to a decease in resistivity by several orders with relaxation
at a fixed temperature without external perturbation. The novel dynamical
process could arise from the competition of strain fields, Coulomb
interactions, magnetic correlations and disorders. Such competition may
frustrate the nucleation, giving rise to a slow, nonexponential relaxation and
"physical aging" behavior.Comment: 5 pages, 4 figure
GRB 030226 in a Density-Jump Medium
We present an explanation for the unusual temporal feature of the GRB 030226
afterglow. The R-band afterglow of this burst faded as ~ t^{-1.2} in ~ 0.2 days
after the burst, rebrightened during the period of ~ 0.2 - 0.5 days, and then
declined with ~ t^{-2.0}. To fit such a light curve, we consider an
ultrarelativistic jetted blast wave expanding in a density-jump medium. The
interaction of the blast wave with a large density jump produces relativistic
reverse and forward shocks. In this model, the observed rebrightening is due to
emissions from these newly forming shocks, and the late-time afterglow is
caused by sideways expansion of the jet. Our fitting implies that the
progenitor star of GRB 030226 could have produced a stellar wind with a large
density jump prior to the GRB onset.Comment: 9 pages, 1 figure, accepted for publication in ApJ Letter
Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Based on unified theory of electromagnetic interactions and gravitational
interactions, the non-relativistic limit of the equation of motion of a charged
Dirac particle in gravitational field is studied. From the Schrodinger equation
obtained from this non-relativistic limit, we could see that the classical
Newtonian gravitational potential appears as a part of the potential in the
Schrodinger equation, which can explain the gravitational phase effects found
in COW experiments. And because of this Newtonian gravitational potential, a
quantum particle in earth's gravitational field may form a gravitationally
bound quantized state, which had already been detected in experiments. Three
different kinds of phase effects related to gravitational interactions are
discussed in this paper, and these phase effects should be observable in some
astrophysical processes. Besides, there exists direct coupling between
gravitomagnetic field and quantum spin, radiation caused by this coupling can
be used to directly determine the gravitomagnetic field on the surface of a
star.Comment: 12 pages, no figur
Excitation Spectrum and Collective Modes of Composite Fermions
According to the composite fermion theory, the interacting electron system at
filling factor is equivalent to the non-interacting composite fermion
system at , which in turn is related to the
non-interacting electron system at . We show that several eigenstates of
non-interacting electrons at do not have any partners for interacting
electrons at , but, upon composite fermion transformation, these states
are eliminated, and the remaining states provide a good description of the
spectrum at . We also show that the collective mode branches of
incompressible states are well described as the collective modes of composite
fermions. Our results suggest that, at small wave vectors, there is a single
well defined collective mode for all fractional quantum Hall states.
Implications for the Chern-Simons treatment of composite fermions will be
discussed.Comment: Revtex. 25 pages. Postscript files of figures is appended to the
pape
Investigating the Rotational Phase of Stellar Flares on M dwarfs Using K2 Short Cadence Data
We present an analysis of K2 short cadence data of 34 M dwarfs which have
spectral types in the range M0 - L1. Of these stars, 31 showed flares with a
duration between 10-90 min. Using distances obtained from Gaia DR2
parallaxes, we determined the energy of the flares to be in the range
erg. In agreement with previous studies
we find rapidly rotating stars tend to show more flares, with evidence for a
decline in activity in stars with rotation periods longer than 10 days.
The rotational modulation seen in M dwarf stars is widely considered to result
from a starspot which rotates in and out of view. Flux minimum is therefore the
rotation phase where we view the main starspot close to the stellar disk
center. Surprisingly, having determined the rotational phase of each flare in
our study we find none show any preference for rotational phase. We outline
three scenarios which could account for this unexpected finding. The
relationship between rotation phase and flare rate will be explored further
using data from wide surveys such as NGTS and TESS.Comment: Accepted main Journal MNRA
- …
