108,930 research outputs found
Stability of Weyl points in magnetic half-metallic Heusler compounds
We employ {\it ab-initio} fully-relativistic electronic structure
calculations to study the stability of the Weyl points in the momentum space
within the class of the half-metallic ferromagnetic full Heusler materials, by
focusing on CoTiAl as a well-established prototype compound. Here we show
that both the number of the Weyl points together with their -space
coordinates can be controlled by the orientation of the magnetization. This
alternative degree of freedom, which is absent in other topological materials
(e.g. in Weyl semimetals), introduces novel functionalities, specific for the
class of half-metallic ferromagnets. Of special interest are Weyl points which
are preserved irrespectively of any arbitrary rotation of the magnetization
axis
Ferrimagnetism of the magnetoelectric compound CuOSeO probed by Se NMR
We present a thorough Se NMR study of a single crystal of the
magnetoelectric compound CuOSeO. The temperature dependence of the
local electronic moments extracted from the NMR data is fully consistent with a
magnetic phase transition from the high-T paramagnetic phase to a low-T
ferrimagnetic state with 3/4 of the Cu ions aligned parallel and 1/4
aligned antiparallel to the applied field of 14.09 T. The transition to this
3up-1down magnetic state is not accompanied by any splitting of the NMR lines
or any abrupt modification in their broadening, hence there is no observable
reduction of the crystalline symmetry from its high-T cubic \textit{P}23
space group. These results are in agreement with high resolution x-ray
diffraction and magnetization data on powder samples reported previously by Bos
{\it et al.} [Phys. Rev. B, {\bf 78}, 094416 (2008)]. We also develop a mean
field theory description of the problem based on a microscopic spin Hamiltonian
with one antiferromagnetic ( K) and one ferromagnetic
( K) nearest-neighbor exchange interaction
Combinatorial interpretation of Haldane-Wu fractional exclusion statistics
Assuming that the maximal allowed number of identical particles in state is
an integer parameter, q, we derive the statistical weight and analyze the
associated equation which defines the statistical distribution. The derived
distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases
q = 1 and q -> infinity (n_i/q -> 1), respectively. We show that the derived
statistical weight provides a natural combinatorial interpretation of
Haldane-Wu fractional exclusion statistics, and present exact solutions of the
distribution equation.Comment: 8 pages, 2 eps-figure
Noise of Kondo dot with ac gate: Floquet-Green's function and Noncrossing Approximation Approach
The transport properties of an ac-driving quantum dot in the Kondo regime are
studied by the Floquet-Green's function method with slave-boson infinite-
noncrossing approximation. Our results show that the Kondo peak of the local
density of states is robust against weak ac gate modulation. Significant
suppression of the Kondo peak can be observed when the ac gate field becomes
strong. The photon-assisted noise of Kondo resonance as a function of dc
voltage does not show singularities which are expected for noninteracting
resonant quantum dot. These findings suggest that one may make use of the
photon-assisted noise measurement to tell apart whether the resonant transport
is via noninteracting resonance or strongly-correlated Kondo resonance
Maximum a Posteriori Adaptation of Network Parameters in Deep Models
We present a Bayesian approach to adapting parameters of a well-trained
context-dependent, deep-neural-network, hidden Markov model (CD-DNN-HMM) to
improve automatic speech recognition performance. Given an abundance of DNN
parameters but with only a limited amount of data, the effectiveness of the
adapted DNN model can often be compromised. We formulate maximum a posteriori
(MAP) adaptation of parameters of a specially designed CD-DNN-HMM with an
augmented linear hidden networks connected to the output tied states, or
senones, and compare it to feature space MAP linear regression previously
proposed. Experimental evidences on the 20,000-word open vocabulary Wall Street
Journal task demonstrate the feasibility of the proposed framework. In
supervised adaptation, the proposed MAP adaptation approach provides more than
10% relative error reduction and consistently outperforms the conventional
transformation based methods. Furthermore, we present an initial attempt to
generate hierarchical priors to improve adaptation efficiency and effectiveness
with limited adaptation data by exploiting similarities among senones
Novel method for refinement of retained austenite in micro/nano-structured bainitic steels
A comparative study was conducted to assess the effects of two different heat treatments on the amount and morphology of the retained austenite in a micro/nano-structured bainitic steel. The heat treatments used in this work were two-stage bainitic transformation and bainitic-partitioning transformation. Both methods resulted in the generation of a multi-phase microstructure containing nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained austenite. Both heat treatments were verified to be effective in refining the retained austenite in micro/nano-structured bainite and increasing the hardness. However, the bainitic transformation followed by partitioning cycle was proved to be a more viable approach than the two-stage bainitic transformation due to much shorter processing time, i.e. ∼2 h compared to ∼4 day, respectively
- …
