225,803 research outputs found
On estimating the effects of clock instability with flicker noise characteristics
A scheme for flicker noise generation is given. The second approach is that of successive segmentation: A clock fluctuation is represented by 2N piecewise linear segments and then converted into a summation of N+1 triangular pulse train functions. The statistics of the clock instability are then formulated in terms of two sample variances at N+1 specified averaging times. The summation converges very rapidly that a value of N 6 is seldom necessary. An application to radio interferometric geodesy shows excellent agreement between the two approaches. Limitations to and the relative merits of the two approaches are discussed
A unified quasilinear theory of weakly turbulent plasmas
Quasi-linear theory of turbulent plasmas with fluctuation fields and coherent wave
Mapping experiment with space station
Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems
Stability of Weyl points in magnetic half-metallic Heusler compounds
We employ {\it ab-initio} fully-relativistic electronic structure
calculations to study the stability of the Weyl points in the momentum space
within the class of the half-metallic ferromagnetic full Heusler materials, by
focusing on CoTiAl as a well-established prototype compound. Here we show
that both the number of the Weyl points together with their -space
coordinates can be controlled by the orientation of the magnetization. This
alternative degree of freedom, which is absent in other topological materials
(e.g. in Weyl semimetals), introduces novel functionalities, specific for the
class of half-metallic ferromagnets. Of special interest are Weyl points which
are preserved irrespectively of any arbitrary rotation of the magnetization
axis
TDRSS orbit determination using short baseline differenced carrier phase
This paper discusses a covariance study on the feasibility of using station-differenced carrier phase on short baselines to track the TDRSS satellites. Orbit accuracies for the TDRSS using station-differenced carrier phase data and range data collected from White Sands, NM are given for various configurations of ground stations and range data precision. A one-sigma-position position accuracy of 25 meters can be achieved using two orthogonal baselines of 100 km for the station-differenced phase data and range data with 1 m accuracy. Relevant configuration parameters for the tracking system and important sources of error are examined. The ability of these data to redetermine the position after a station keeping maneuver is addressed. The BRTS system, which is currently used for TDRSS orbit determination, is briefly described and its errors are given for comparison
Precise near-earth navigation with GPS: A survey of techniques
The tracking accuracy of the low earth orbiters (below about 3000 km altitude) can be brought below 10 cm with a variety of differential techniques that exploit the Global Positioning System (GPS). All of these techniques require a precisely known global network of GPS ground receivers and a receiver aboard the user satellite, and all simultaneously estimate the user and GPS satellite orbits. Three basic approaches are the geometric, dynamic, and nondynamic strategies. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the nondynamic strategy show considerable promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a novel gravity-adjustment method to exploit data from repeat ground tracks. These techniques will offer sub-decimeter accuracy for dynamically unpredictable satellites down to the lowesst possible altitudes
Complementarity of information sent via different bases
We discuss quantitatively the complementarity of information transmitted by a
quantum system prepared in a basis state in one out of several different
mutually unbiased bases (MUBs). We obtain upper bounds on the information
available to a receiver who has no knowledge of which MUB was chosen by the
sender. These upper bounds imply a complementarity of information encoded via
different MUBs and ultimately ensure the security in quantum key distribution
protocols.Comment: 9 pages, references adde
- …
