10,385 research outputs found
Effect of Dzyaloshinskii Moriya interaction on magnetic vortex
The effect of the Dzyaloshinskii Moriya interaction on the vortex in magnetic
microdisk was investigated by micro magnetic simulation based on the Landau
Lifshitz Gilbert equation. Our results show that the DM interaction modifies
the size of the vortex core, and also induces an out of plane magnetization
component at the edge and inside the disk. The DM interaction can destabilizes
one vortex handedness, generate a bias field to the vortex core and couple the
vortex polarity and chirality. This DM-interaction-induced coupling can
therefore provide a new way to control vortex polarity and chirality
Diffusion geometry approach to efficiently remove electrical stimulation artifacts in intracranial electroencephalography
Cortical oscillations, electrophysiological activity patterns, associated
with cognitive functions and impaired in many psychiatric disorders can be
observed in intracranial electroencephalography (iEEG). Direct cortical
stimulation (DCS) may directly target these oscillations and may serve as
therapeutic approaches to restore functional impairments. However, the presence
of electrical stimulation artifacts in neurophysiological data limits the
analysis of the effects of stimulation. Currently available methods suffer in
performance in the presence of nonstationarity inherent in biological data. Our
algorithm, Shape Adaptive Nonlocal Artifact Removal (SANAR) is based on
unsupervised manifold learning. By estimating the Euclidean median of k nearest
neighbors of each artifact in a nonlocal fashion, we obtain a faithful
representation of the artifact which is then subtracted. This approach
overcomes the challenges presented by nonstationarity. SANAR is effective in
removing stimulation artifacts in the time domain while preserving the spectral
content of the endogenous neurophysiological signal. We demonstrate the
performance in a simulated dataset as well as in human iEEG data. Using two
quantitative measures, that capture how much of information from endogenous
activity is retained, we demonstrate that SANAR's performance exceeds that of
one of the widely used approaches, independent component analysis, in the time
domain as well as the frequency domain. This approach allows for the analysis
of iEEG data, single channel or multiple channels, during DCS, a crucial step
in advancing our understanding of the effects of periodic stimulation and
developing new therapies
A Method for Neuronal Source Identification
Multi-sensor microelectrodes for extracellular action potential recording
have significantly improved the quality of in vivo recorded neuronal signals.
These microelectrodes have also been instrumental in the localization of
neuronal signal sources. However, existing neuron localization methods have
been mostly utilized in vivo, where the true neuron location remains unknown.
Therefore, these methods could not be experimentally validated. This article
presents experimental validation of a method capable of estimating both the
location and intensity of an electrical signal source. A four-sensor
microelectrode (tetrode) immersed in a saline solution was used to record
stimulus patterns at multiple intensity levels generated by a stimulating
electrode. The location of the tetrode was varied with respect to the
stimulator. The location and intensity of the stimulator were estimated using
the Multiple Signal Classification (MUSIC) algorithm, and the results were
quantified by comparison to the true values. The localization results, with an
accuracy and precision of ~ 10 microns, and ~ 11 microns respectively, imply
that MUSIC can resolve individual neuronal sources. Similarly, source intensity
estimations indicate that this approach can track changes in signal amplitude
over time. Together, these results suggest that MUSIC can be used to
characterize neuronal signal sources in vivo.Comment: 14 pages, 5 figure
Magnetization reversal in Kagome artificial spin ice studied by first-order reversal curves
Magnetization reversal of interconnected Kagome artificial spin ice was
studied by the first-order reversal curve (FORC) technique based on the
magneto-optical Kerr effect and magnetoresistance measurements. The
magnetization reversal exhibits a distinct six-fold symmetry with the external
field orientation. When the field is parallel to one of the nano-bar branches,
the domain nucleation/propagation and annihilation processes sensitively depend
on the field cycling history and the maximum field applied. When the field is
nearly perpendicular to one of the branches, the FORC measurement reveals the
magnetic interaction between the Dirac strings and orthogonal branches during
the magnetization reversal process. Our results demonstrate that the FORC
approach provides a comprehensive framework for understanding the magnetic
interaction in the magnetization reversal processes of spin-frustrated systems
Novel vortex lattice transition in d-wave superconductors
We study the vortex state in a magnetic field parallel to the axis in the
framework of the extended Ginzburg Landau equation. We find the vortex acquires
a fourfold modulation proportional to where is the angle
makes with the -axis. This term gives rise to an attractive
interaction between two vortices when they are aligned parallel to or
. We predict the first order vortex lattice transition at
from triangular into the square lattice
tilted by from the axis. This gives the critical field
a few Tesla for YBCO and Bi2212 monocrystals at low temperatures ().Comment: 6 pages, 4 figure
Recommended from our members
Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration.
The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration
Allogeneic mesenchymal stromal cells overexpressing mutant human Hypoxia-inducible factor 1-α (HIF1-α) in an ovine model of acute myocardial infarction
Background-Bone marrow mesenchymal stromal cells (BMMSCs) are cardioprotective in acute myocardial infarction (AMI) because of release of paracrine angiogenic and prosurvival factors. Hypoxia-inducible factor 1-α (HIF1-α), rapidly degraded during normoxia, is stabilized during ischemia and upregulates various cardioprotective genes. We hypothesized that BMMSCs engineered to overexpress mutant, oxygen-resistant HIF1-α would confer greater cardioprotection than nontransfected BMMSCs in sheep with AMI. Methods and Results-Allogeneic BMMSCs transfected with a minicircle vector encoding mutant HIF1-α (BMMSC-HIF) were injected in the peri-infarct of sheep (n=6) undergoing coronary occlusion. Over 2 months, infarct volume measured by cardiac magnetic resonance (CMR) imaging decreased by 71.7±1.3% (P < 0.001), and left ventricular (LV) percent ejection fraction (%EF) increased near 2-fold (P < 0.001) in the presence of markedly decreased end-systolic volume. Sheep receiving nontransfected BMMSCs (BMMSC; n=6) displayed less infarct size limitation and percent LVEF improvement, whereas in placebo-treated animals (n=6), neither parameters changed over time. HIF1-α-transfected BMMSCs (BMMSC-HIF) induced angio-/arteriogenesis and decreased apoptosis by HIF1-mediated overexpression of erythropoietin, inducible nitrous oxide synthase, vascular endothelial growth factor, and angiopoietin-1. Cell tracking using paramagnetic iron nanoparticles in 12 additional sheep revealed enhanced long-term retention of BMMSC-HIF. Conclusions-Intramyocardial delivery of BMMSC-HIF reduced infarct size and improved LV systolic performance compared to BMMSC, attributed to increased neovascularization and cardioprotective effects induced by HIF1-mediated overexpression of paracrine factors and enhanced retention of injected cells. Given the safety of the minicircle vector and the feasibility of BMMSCs for allogeneic application, this treatment may be potentially useful in the clinic.Fil: Hnatiuk, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Ong, Sang-Ging. Stanford University School of Medicine; Estados UnidosFil: Olea, Fernanda Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Locatelli, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Riegler, Johannes. Stanford University School of Medicine; Estados UnidosFil: Lee, Won Hee. Stanford University School of Medicine; Estados UnidosFil: Jen, Cheng Hao. University of London; Reino UnidoFil: De Lorenzi, Andrea. Fundación Favaloro; ArgentinaFil: Giménez, Carlos Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Laguens, Rubén. Universidad Favaloro; ArgentinaFil: Wu, Joseph C.. Stanford University School of Medicine; Estados UnidosFil: Crottogini, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin
Troubleshooting Arterial-Phase MR Images of Gadoxetate Disodium-Enhanced Liver.
Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field
Loss of the tumor suppressor, Tp53, enhances the androgen receptor-mediated oncogenic transformation and tumor development in the mouse prostate.
Recent genome analysis of human prostate cancers demonstrated that both AR gene amplification and TP53 mutation are among the most frequently observed alterations in advanced prostate cancer. However, the biological role of these dual genetic alterations in prostate tumorigenesis is largely unknown. In addition, there are no biologically relevant models that can be used to assess the molecular mechanisms for these genetic abnormalities. Here, we report a novel mouse model, in which elevated transgenic AR expression and Trp53 deletion occur simultaneously in mouse prostatic epithelium to mimic human prostate cancer cells. These compound mice developed an earlier onset of high-grade prostatic intraepithelial neoplasia and accelerated prostate tumors in comparison with mice harboring only the AR transgene. Histological analysis showed prostatic sarcomatoid and basaloid carcinomas with massive squamous differentiation in the above compound mice. RNA-sequencing analyses identified a robust enrichment of the signature genes for human prostatic basal cell carcinomas in the above prostate tumors. Master regulator analysis revealed SOX2 as a transcriptional regulator in prostatic basal cell tumors. Elevated expression of SOX2 and its downstream target genes were detected in prostatic tumors of the compound mice. Chromatin immunoprecipitation analyses implicate a coregulatory role of AR and SOX2 in the expression of prostatic basal cell signature genes. Our data demonstrate a critical role of SOX2 in prostate tumorigenesis and provide mechanistic insight into prostate tumor aggressiveness and progression mediated by aberrant AR and p53 signaling pathways
Schr\"{o}dinger Fields on the Plane with non-Abelian Chern-Simons Interactions
Physical content of the nonrelativistic quantum field theory with non-Abelian
Chern-Simons interactions is clarified with the help of the equivalent first-
quantized description which we derive in any physical gauge.Comment: 12 pages, LaTex, SNUTP 94-1
- …
