131,091 research outputs found
Recommended from our members
High-Order Dual-Port Quasi-Absorptive Microstrip Coupled-Line Bandpass Filters
In this article, we present the first demonstration of distributed and symmetrical all-band quasi-absorptive filters that can be designed to arbitrarily high orders. The proposed quasi-absorptive filter consists of a bandpass section (reflective-type coupled-line filter) and absorptive sections (a matched resistor in series with a shorted quarter-wavelength transmission line). Through a detailed analysis, we show that the absorptive sections not only eliminate out-of-band reflections but also determine the passband bandwidth (BW). As such, the bandpass section mainly determines the out-of-band roll-off and the order of the filter can be arbitrarily increased without affecting the filter BW by cascading more bandpass sections. A set of 2.45-GHz one-, two-, and three-pole quasi-absorptive microstrip bandpass filters are designed and measured. The filters show simultaneous input and output absorption across both the passband and the stopband. Measurement results agree very well with the simulation and validate the proposed design concept
Multilevel quantum Otto heat engines with identical particles
A quantum Otto heat engine is studied with multilevel identical particles
trapped in one-dimensional box potential as working substance. The symmetrical
wave function for Bosons and the anti-symmetrical wave function for Fermions
are considered. In two-particle case, we focus on the ratios of ()
to , where and are the work done by two Bosons and Fermions
respectively, and is the work output of a single particle under the same
conditions. Due to the symmetric of the wave functions, the ratios are not
equal to . Three different regimes, low temperature regime, high temperature
regime, and intermediate temperature regime, are analyzed, and the effects of
energy level number and the differences between the two baths are calculated.
In the multiparticle case, we calculate the ratios of to , where
can be seen as the average work done by a single particle in
multiparticle heat engine.
For other working substances whose energy spectrum have the form of , the results are similar. For the case , two different
conclusions are obtained
Gradient design of metal hollow sphere (MHS) foams with density gradients
This is the post-print version of the final paper published in Composites Part B: Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Metal hollow sphere (MHS) structures with a density gradient have attracted increasing attention in the effort to pursue improved energy absorption properties. In this paper, dynamic crushing of MHS structures of different gradients are discussed, with the gradients being received by stacks of hollow spheres of the same external diameter but different wall thicknesses in the crushing direction. Based on the dynamic performance of MHS structures with uniform density, a crude semi-empirical model is developed for the design of MHS structures in terms of gradient selections for energy absorption and protection against impact. Following this, dynamic responses of density graded MHS foams are comparatively analyzed using explicit finite element simulation and the proposed formula. Results show that the simple semi-empirical model can predict the response of density gradient MHS foams and is ready-to-use in the gradient design of MHS structures.The National Science Foundation of China and the State Key Laboratory of Explosion Science
and Technology (Beijing Institute of Technology
Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas
The dynamics of the ultra-intense circularly polarized solitons under
inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell
and relativistic hydrodynamic equations and is solved with fully implicit
energy-conserving numerical scheme. It is shown that a propagating weak soliton
can be decreased and reflected by increasing plasma background, which is
consistent with the existing studies based on hypothesis of weak density
response. However it is found that ultra-intense soliton is well trapped and
kept still when encountering increasing background. Probably, this founding can
be applied for trapping and amplifying high-intensity laser-fields.Comment: 4 pages, 3 figures, submitted to Phys. Plasma
- …
