2,068 research outputs found

    pp-wave chiral superfluidity from an ss-wave interacting atomic Fermi gas

    Full text link
    Chiral pp-wave superfluids are fascinating topological quantum states of matter that have been found in the liquid 3^3He-A phase and arguably in the electronic Sr2_2RuO4_4 superconductor. They are shown fundamentally related to the fractional 5/25/2 quantum Hall state which supports fractional exotic excitations. A common understanding is that such states require spin-triplet pairing of fermions due to pp-wave interaction. Here we report by controlled theoretical approximation that a center-of-mass Wannier pp-wave chiral superfluid state can arise from spin-singlet pairing for an ss-wave interacting atomic Fermi gas in an optical lattice. Despite a conceptually different origin, it shows topological properties similar to the conventional chiral pp-wave state. These include a non-zero Chern number and the appearance of chiral fermionic zero modes bounded to domain walls. Several signature quantities are calculated for the cold atom experimental condition.Comment: 16 pages and 7 figures including supplementary material

    Kernel solver design of FPGA-based real-time simulator for active distribution networks

    Get PDF
    The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low cost. The sparse linear equations formed by the node conductance matrix need to be solved repeatedly within each time-step, which introduces great challenges to the performance of the real-time simulator. In this paper, a fine-grained solver of the FPGA-based real-time simulator for active distribution networks is designed to meet the computational demand. The framework of the solver, offline process design on PC and online process design on FPGA are proposed in detail. The modified IEEE 33-node system with photovoltaics is simulated on a 4-FPGA-based real-time simulator. Simulation results are compared with PSCAD/EMTDC under the same conditions to validate the solver design

    Content-Based Colour Transfer

    Get PDF
    International audienceThis paper presents a novel content-based method for transferring the colour patterns between images. Unlike previous methods that rely on image colour statistics, our method puts an emphasis on high-level scene content analysis. We first automatically extract the foreground subject areas and background scene layout from the scene. The semantic correspondences of the regions between source and target images are established. In the second step, the source image is re-coloured in a novel optimization framework, which incorporates the extracted content information and the spatial distributions of the target colour styles. A new progressive transfer scheme is proposed to integrate the advantages of both global and local transfer algorithms, as well as avoid the over-segmentation artefact in the result. Experiments how that with a better understanding of the scene contents, our method well preserves the spatial layout, the colour distribution and the visual coherence in the transfer process. As an interesting extension, our method can also be used to re-colour video clips with spatially-varied colour effects

    GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Full text link
    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on graphics processing unit (GPU) based on our previous work on CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called column generation approach to deal with its extremely large dimensionality on GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and 2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART

    Education in inpatient children and young people’s mental health services

    Get PDF
    <p>As a chronic disease, osteoarthritis (OA) leads to the degradation of both cartilage and subchondral bone, its development being mediated by proinflammatory cytokines like interleukin-1β. In the present study, the anti-inflammatory effect of specnuezhenide (SPN) in OA and its underlying mechanism were studied in vitro and in vivo. The results showed that SPN decreases the expression of cartilage matrix-degrading enzymes and the activation of NF-κB and wnt/β-catenin signaling, and increases chondrocyte-specific gene expression in IL-1β-induced inflammation in chondrocytes. Furthermore, SPN treatment prevents the degeneration of both cartilage and subchondral bone in a rat model of OA. To the best of our knowledge, this study is the first to report that SPN decreases interleukin-1β-induced inflammation in rat chondrocytes by inhibiting the activation of the NF-κB and wnt/β-catenin pathways, and, thus, has therapeutic potential in the treatment of OA.</p
    corecore