155,296 research outputs found
Competent genetic-evolutionary optimization of water distribution systems
A genetic algorithm has been applied to the optimal design and rehabilitation of a water distribution system. Many of the previous applications have been limited to small water distribution systems, where the computer time used for solving the problem has been relatively small. In order to apply genetic and evolutionary optimization technique to a large-scale water distribution system, this paper employs one of competent genetic-evolutionary algorithms - a messy genetic algorithm to enhance the efficiency of an optimization procedure. A maximum flexibility is ensured by the formulation of a string and solution representation scheme, a fitness definition, and the integration of a well-developed hydraulic network solver that facilitate the application of a genetic algorithm to the optimization of a water distribution system. Two benchmark problems of water pipeline design and a real water distribution system are presented to demonstrate the application of the improved technique. The results obtained show that the number of the design trials required by the messy genetic algorithm is consistently fewer than the other genetic algorithms
Dispelling the Anthropic Principle from the Dimensionality Arguments
It is shown that in d=11 supergravity, under a very reasonable ansatz, the
nearly flat spacetime in which we are living must be 4-dimensional without
appealing to the Anthropic Principle. Can we dispel the Anthropic Principle
completely from cosmology?Comment: 7 pages, Essa
Resonant Tunneling through S- and U-shaped Graphene Nanoribbons
We theoretically investigate resonant tunneling through S- and U-shaped
nanostructured graphene nanoribbons. A rich structure of resonant tunneling
peaks are found eminating from different quasi-bound states in the middle
region. The tunneling current can be turned on and off by varying the Fermi
energy. Tunability of resonant tunneling is realized by changing the width of
the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure
Local Heat Transfer Measurements on a Rotating Flat Blade Model with a Single Film Hole
An experimental study was performed to measure the heat transfer coefficient distributions on a flat blade model under rotating operating conditions. A steady-state thermochromic liquid crystal technique was employed to measure the surface temperature, and all the signals from the rotating reference frame were collected by the telemetering instrument via a wireless connection. Both air and CO2 were used as coolant. Results show that the rotational effect has a significant influence on the heat transfer coefficient distributions. The profiles of hg/h0, which is the ratio of heat transfer coefficient with film cooling to that without film cooling, deflect towards the high-radius locations on both the pressure surface and suction surface as the rotation number (Rt) increases, and the deflective tendency is more evident on the suction surface. The variations in mainstream Reynolds number (ReD) and blowing ratio (M) present different distributions of hg/h0 on the pressure and suction surfaces, respectively. Furthermore, the coolant used for CO2 injection is prone to result in lower heat transfer coefficients.Peer reviewe
Realising intelligent virtual design
This paper presents a vision and focus for the CAD Centre research: the Intelligent Design Assistant (IDA). The vision is based upon the assumption that the human and computer can operate symbiotically, with the computer providing support for the human within the design process. Recently however the focus has been towards the development of integrated design platforms that provide general support irrespective of the domain, to a number of distributed collaborative designers. This is illustrated within the successfully completed Virtual Reality Ship (VRS) virtual platform, and the challenges are discussed further within the NECTISE, SAFEDOR and VIRTUE projects
GRB 030226 in a Density-Jump Medium
We present an explanation for the unusual temporal feature of the GRB 030226
afterglow. The R-band afterglow of this burst faded as ~ t^{-1.2} in ~ 0.2 days
after the burst, rebrightened during the period of ~ 0.2 - 0.5 days, and then
declined with ~ t^{-2.0}. To fit such a light curve, we consider an
ultrarelativistic jetted blast wave expanding in a density-jump medium. The
interaction of the blast wave with a large density jump produces relativistic
reverse and forward shocks. In this model, the observed rebrightening is due to
emissions from these newly forming shocks, and the late-time afterglow is
caused by sideways expansion of the jet. Our fitting implies that the
progenitor star of GRB 030226 could have produced a stellar wind with a large
density jump prior to the GRB onset.Comment: 9 pages, 1 figure, accepted for publication in ApJ Letter
- …
