5,045 research outputs found

    Double Quantum Dots in Carbon Nanotubes

    Full text link
    We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit coupling. Exact calculation are combined with a simple model to provide an intuitive and accurate description of single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration affect the relative strength of the electron-electron interactions and can lead to different ground state transitions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experiments and thereby can also limit the stability of spin-qubits in quantum information proposals. Our analysis is generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6 correcte

    Two-dimensional models of layered protoplanetary discs - II. The effect of a residual viscosity in the dead zone

    Full text link
    We study axisymmetric models of layered protoplanetary discs taking radiative transfer effects into account, and allowing for a residual viscosity in the dead zone. We also explore the effect of different viscosity prescriptions. In addition to the ring instability reported in the first paper of the series we find an oscillatory instability of the dead zone, accompanied by variations of the accretion rate onto the central star. We provide a simplified analytical description explaining the mechanism of the oscillations. Finally, we find that the residual viscosity enables stationary accretion in large regions of layered discs. Based on results obtained with the help of a simple 1-D hydrocode we identify these regions, and discuss conditions in which layered discs can give rise to FU~Orionis phenomena.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Carbon Ignition in Type Ia Supernovae: An Analytic Model

    Full text link
    The observable properties of a Type Ia supernova are sensitive to how the nuclear runaway ignites in a Chandrasekhar mass white dwarf - at a single point at its center, off-center, or at multiple points and times. We present a simple analytic model for the runaway based upon a combination of stellar mixing-length theory and recent advances in understanding Rayleigh-Benard convection. The convective flow just prior to runaway is likely to have a strong dipolar component, though higher multipoles may contribute appreciably at the very high Rayleigh number (1025^{25}) appropriate to the white dwarf core. A likely outcome is multi-point ignition with an exponentially increasing number of ignition points during the few tenths of a second that it takes the runaway to develop. The first sparks ignite approximately 150 - 200 km off center, followed by ignition at smaller radii. Rotation may be important to break the dipole asymmetry of the ignition and give a healthy explosion.Comment: 14 pages, 0 figures, submitted to ApJ, corrected typo in first author's nam

    Dielectric function of the semiconductor hole gas

    Get PDF
    We study the dielectric function of the homogeneous hole gas in p-doped zinc-blende III-V bulk semiconductors within random phase approximation with the valence band being modeled by Luttinger's Hamiltonian in the spherical approximation. In the static limit we find a beating of Friedel oscillations between the two Fermi momenta for heavy and light holes, while at large frequencies dramatic corrections to the plasmon dispersion occur.Comment: 4 pages, 1 figure included. Version to appear in Europhys. Let

    Closed-circuit television welding- electrode guidance system

    Get PDF
    Closed-circuit TV camera is mounted parallel to electrode and moves along with it. Camera is scanned along seam so seam is viewed parallel with scan lines on TV monitor. Two fiber optics illuminators are attached to guidance system; they illuminate seam for TV camera

    Nonlinear electromagnetic response of graphene: Frequency multiplication and the self-consistent-field effects

    Full text link
    Graphene is a recently discovered carbon based material with unique physical properties. This is a monolayer of graphite, and the two-dimensional electrons and holes in it are described by the effective Dirac equation with a vanishing effective mass. As a consequence, electromagnetic response of graphene is predicted to be strongly non-linear. We develop a quasi-classical kinetic theory of the non-linear electromagnetic response of graphene, taking into account the self-consistent-field effects. Response of the system to both harmonic and pulse excitation is considered. The frequency multiplication effect, resulting from the non-linearity of the electromagnetic response, is studied under realistic experimental conditions. The frequency up-conversion efficiency is analysed as a function of the applied electric field and parameters of the samples. Possible applications of graphene in terahertz electronics are discussed.Comment: 14 pages, 7 figures, invited paper written for a special issue of JPCM "Terahertz emitters

    Pseudo-diffusive magnetotransport in graphene

    Full text link
    Transport properties through wide and short ballistic graphene junctions are studied in the presence of arbitrary dopings and magnetic fields. No dependence on the magnetic field is observed at the Dirac point for any current cumulant, just as in a classical diffusive system, both in normal-graphene-normal and normal-graphene-superconductor junctions. This pseudo-diffusive regime is however extremely fragile respect to doping at finite fields. We identify the crossovers to a field-suppressed and a normal ballistic transport regime in the magnetic field - doping parameter space, and provide a physical interpretation of the phase diagram. Remarkably, pseudo-diffusive transport is recovered away from the Dirac point in resonance with Landau levels at high magnetic fields.Comment: 4+ pages, 2 figures. Minor corrections. Published version

    Spatial and Temporal Scales of Sverdrup Balance

    Get PDF
    Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales

    A Simple Passive Scalar Advection-Diffusion Model

    Full text link
    This paper presents a simple, one-dimensional model of a randomly advected passive scalar. The model exhibits anomalous inertial range scaling for the structure functions constructed from scalar differences. The model provides a simple computational test for recent ideas regarding closure and scaling for randomly advected passive scalars. Results suggest that high order structure function scaling depends on the largest velocity eddy size, and hence scaling exponents may be geometry-dependent and non-universal.Comment: 30 pages, 11 figure

    On Coulomb drag in double layer systems

    Full text link
    We argue, for a wide class of systems including graphene, that in the low temperature, high density, large separation and strong screening limits the drag resistivity behaves as d^{-4}, where d is the separation between the two layers. The results are independent of the energy dispersion relation, the dependence on momentum of the transport time, and the wave function structure factors. We discuss how a correct treatment of the electron-electron interactions in an inhomogeneous dielectric background changes the theoretical analysis of the experimental drag results of Ref. [1]. We find that a quantitative understanding of the available experimental data [1] for drag in graphene is lacking.Comment: http://iopscience.iop.org/0953-8984/24/33/335602
    corecore