5,045 research outputs found
Double Quantum Dots in Carbon Nanotubes
We study the two-electron eigenspectrum of a carbon-nanotube double quantum
dot with spin-orbit coupling. Exact calculation are combined with a simple
model to provide an intuitive and accurate description of single-particle and
interaction effects. For symmetric dots and weak magnetic fields, the
two-electron ground state is antisymmetric in the spin-valley degree of freedom
and is not a pure spin-singlet state. When double occupation of one dot is
favored by increasing the detuning between the dots, the Coulomb interaction
causes strong correlation effects realized by higher orbital-level mixing.
Changes in the double-dot configuration affect the relative strength of the
electron-electron interactions and can lead to different ground state
transitions. In particular, they can favor a ferromagnetic ground state both in
spin and valley degrees of freedom. The strong suppression of the energy gap
can cause the disappearance of the Pauli blockade in transport experiments and
thereby can also limit the stability of spin-qubits in quantum information
proposals. Our analysis is generalized to an array of coupled dots which is
expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6
correcte
Two-dimensional models of layered protoplanetary discs - II. The effect of a residual viscosity in the dead zone
We study axisymmetric models of layered protoplanetary discs taking radiative
transfer effects into account, and allowing for a residual viscosity in the
dead zone. We also explore the effect of different viscosity prescriptions. In
addition to the ring instability reported in the first paper of the series we
find an oscillatory instability of the dead zone, accompanied by variations of
the accretion rate onto the central star. We provide a simplified analytical
description explaining the mechanism of the oscillations. Finally, we find that
the residual viscosity enables stationary accretion in large regions of layered
discs. Based on results obtained with the help of a simple 1-D hydrocode we
identify these regions, and discuss conditions in which layered discs can give
rise to FU~Orionis phenomena.Comment: 9 pages, 5 figures, accepted for publication in MNRA
Carbon Ignition in Type Ia Supernovae: An Analytic Model
The observable properties of a Type Ia supernova are sensitive to how the
nuclear runaway ignites in a Chandrasekhar mass white dwarf - at a single point
at its center, off-center, or at multiple points and times. We present a simple
analytic model for the runaway based upon a combination of stellar
mixing-length theory and recent advances in understanding Rayleigh-Benard
convection. The convective flow just prior to runaway is likely to have a
strong dipolar component, though higher multipoles may contribute appreciably
at the very high Rayleigh number (10) appropriate to the white dwarf
core. A likely outcome is multi-point ignition with an exponentially increasing
number of ignition points during the few tenths of a second that it takes the
runaway to develop. The first sparks ignite approximately 150 - 200 km off
center, followed by ignition at smaller radii. Rotation may be important to
break the dipole asymmetry of the ignition and give a healthy explosion.Comment: 14 pages, 0 figures, submitted to ApJ, corrected typo in first
author's nam
Dielectric function of the semiconductor hole gas
We study the dielectric function of the homogeneous hole gas in p-doped
zinc-blende III-V bulk semiconductors within random phase approximation with
the valence band being modeled by Luttinger's Hamiltonian in the spherical
approximation. In the static limit we find a beating of Friedel oscillations
between the two Fermi momenta for heavy and light holes, while at large
frequencies dramatic corrections to the plasmon dispersion occur.Comment: 4 pages, 1 figure included. Version to appear in Europhys. Let
Closed-circuit television welding- electrode guidance system
Closed-circuit TV camera is mounted parallel to electrode and moves along with it. Camera is scanned along seam so seam is viewed parallel with scan lines on TV monitor. Two fiber optics illuminators are attached to guidance system; they illuminate seam for TV camera
Nonlinear electromagnetic response of graphene: Frequency multiplication and the self-consistent-field effects
Graphene is a recently discovered carbon based material with unique physical
properties. This is a monolayer of graphite, and the two-dimensional electrons
and holes in it are described by the effective Dirac equation with a vanishing
effective mass. As a consequence, electromagnetic response of graphene is
predicted to be strongly non-linear. We develop a quasi-classical kinetic
theory of the non-linear electromagnetic response of graphene, taking into
account the self-consistent-field effects. Response of the system to both
harmonic and pulse excitation is considered. The frequency multiplication
effect, resulting from the non-linearity of the electromagnetic response, is
studied under realistic experimental conditions. The frequency up-conversion
efficiency is analysed as a function of the applied electric field and
parameters of the samples. Possible applications of graphene in terahertz
electronics are discussed.Comment: 14 pages, 7 figures, invited paper written for a special issue of
JPCM "Terahertz emitters
Pseudo-diffusive magnetotransport in graphene
Transport properties through wide and short ballistic graphene junctions are
studied in the presence of arbitrary dopings and magnetic fields. No dependence
on the magnetic field is observed at the Dirac point for any current cumulant,
just as in a classical diffusive system, both in normal-graphene-normal and
normal-graphene-superconductor junctions. This pseudo-diffusive regime is
however extremely fragile respect to doping at finite fields. We identify the
crossovers to a field-suppressed and a normal ballistic transport regime in the
magnetic field - doping parameter space, and provide a physical interpretation
of the phase diagram. Remarkably, pseudo-diffusive transport is recovered away
from the Dirac point in resonance with Landau levels at high magnetic fields.Comment: 4+ pages, 2 figures. Minor corrections. Published version
Spatial and Temporal Scales of Sverdrup Balance
Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales
A Simple Passive Scalar Advection-Diffusion Model
This paper presents a simple, one-dimensional model of a randomly advected
passive scalar. The model exhibits anomalous inertial range scaling for the
structure functions constructed from scalar differences. The model provides a
simple computational test for recent ideas regarding closure and scaling for
randomly advected passive scalars. Results suggest that high order structure
function scaling depends on the largest velocity eddy size, and hence scaling
exponents may be geometry-dependent and non-universal.Comment: 30 pages, 11 figure
On Coulomb drag in double layer systems
We argue, for a wide class of systems including graphene, that in the low
temperature, high density, large separation and strong screening limits the
drag resistivity behaves as d^{-4}, where d is the separation between the two
layers. The results are independent of the energy dispersion relation, the
dependence on momentum of the transport time, and the wave function structure
factors. We discuss how a correct treatment of the electron-electron
interactions in an inhomogeneous dielectric background changes the theoretical
analysis of the experimental drag results of Ref. [1]. We find that a
quantitative understanding of the available experimental data [1] for drag in
graphene is lacking.Comment: http://iopscience.iop.org/0953-8984/24/33/335602
- …
