2,066 research outputs found
Competitive Copolymerization: Access to Azridine Copolymers with Adjustable Gradient Strengths
Noise characterization of an atomic magnetometer at sub-millihertz frequencies
Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to
100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear
magneto-optical rotation. This was done in order to assess if the technology
can be used for space missions with demanding low-frequency requirements like
the LISA concept. Magnetometry for low-frequency applications is usually
limited by noise and thermal drifts, which become the dominant
contributions at sub-millihertz frequencies. Magnetic field measurements with
atomic magnetometers are not immune to low-frequency fluctuations and
significant excess noise may arise due to external elements, such as
temperature fluctuations or intrinsic noise in the electronics. In addition,
low-frequency drifts in the applied magnetic field have been identified in
order to distinguish their noise contribution from that of the sensor. We have
found the technology suitable for LISA in terms of sensitivity, although
further work must be done to characterize the low-frequency noise in a
miniaturized setup suitable for space missions.Comment: 11 pages, 12 figure
Low-velocity collisions of centimeter-sized dust aggregates
Collisions between centimeter- to decimeter-sized dusty bodies are important
to understand the mechanisms leading to the formation of planetesimals. We thus
performed laboratory experiments to study the collisional behavior of dust
aggregates in this size range at velocities below and around the fragmentation
threshold. We developed two independent experimental setups with the same goal
to study the effects of bouncing, fragmentation, and mass transfer in free
particle-particle collisions. The first setup is an evacuated drop tower with a
free-fall height of 1.5 m, providing us with 0.56 s of microgravity time so
that we observed collisions with velocities between 8 mm/s and 2 m/s. The
second setup is designed to study the effect of partial fragmentation (when
only one of the two aggregates is destroyed) and mass transfer in more detail.
It allows for the measurement of the accretion efficiency as the samples are
safely recovered after the encounter. Our results are that for very low
velocities we found bouncing as could be expected while the fragmentation
velocity of 20 cm/s was significantly lower than expected. We present the
critical energy for disruptive collisions Q*, which showed up to be at least
two orders of magnitude lower than previous experiments in the literature. In
the wide range between bouncing and disruptive collisions, only one of the
samples fragmented in the encounter while the other gained mass. The accretion
efficiency in the order of a few percent of the particle's mass is depending on
the impact velocity and the sample porosity. Our results will have consequences
for dust evolution models in protoplanetary disks as well as for the strength
of large, porous planetesimal bodies
Edge effects in graphene nanostructures: I. From multiple reflection expansion to density of states
We study the influence of different edge types on the electronic density of
states of graphene nanostructures. To this end we develop an exact expansion
for the single particle Green's function of ballistic graphene structures in
terms of multiple reflections from the system boundary, that allows for a
natural treatment of edge effects. We first apply this formalism to calculate
the average density of states of graphene billiards. While the leading term in
the corresponding Weyl expansion is proportional to the billiard area, we find
that the contribution that usually scales with the total length of the system
boundary differs significantly from what one finds in semiconductor-based,
Schr\"odinger type billiards: The latter term vanishes for armchair and
infinite mass edges and is proportional to the zigzag edge length, highlighting
the prominent role of zigzag edges in graphene. We then compute analytical
expressions for the density of states oscillations and energy levels within a
trajectory based semiclassical approach. We derive a Dirac version of
Gutzwiller's trace formula for classically chaotic graphene billiards and
further obtain semiclassical trace formulae for the density of states
oscillations in regular graphene cavities. We find that edge dependent
interference of pseudospins in graphene crucially affects the quantum spectrum.Comment: to be published in Phys. Rev.
Suspension-adapted Chinese hamster ovary-derived cells expressing green fluorescent protein as a screening tool for biomaterials
Synthetic biomaterials play an important role in regenerative medicine. To be effective they must support cell attachment and proliferation in addition to being non-toxic and non-immunogenic. We used a suspension-adapted Chinese hamster ovary-derived cell line expressing green fluorescent protein (GFP) to assess cell attachment and growth on synthetic biomaterials by direct measurement of GFP-specific fluorescence. To simplify operations, all cell cultivation steps were performed in orbitally-shaken, disposable containers. Comparative studies between this GFP assay and previously established cell quantification assays demonstrated that this novel approach is suitable for rapid screening of a large number of samples. Furthermore the utility of our assay system was confirmed by evaluation of cell growth on three polyvinylidene fluoride polymer scaffolds that differed in pore diameter and drawing conditions. The data presented here prove the general utility of GFP-expressing cell lines and orbital shaking technology for the screening of biomaterials for tissue engineering application
Aharonov-Bohm-Coulomb Problem in Graphene Ring
We study the Aharonov-Bohm-Coulomb problem in a graphene ring. We
investigate, in particular, the effects of a Coulomb type potential of the form
on the energy spectrum of Dirac electrons in the graphene ring in two
different ways: one for the scalar coupling and the other for the vector
coupling. It is found that, since the potential in the scalar coupling breaks
the time-reversal symmetry between the two valleys as well as the effective
time-reversal symmetry in a single valley, the energy spectrum of one valley is
separated from that of the other valley, demonstrating a valley polarization.
In the vector coupling, however, the potential does not break either of the two
symmetries and its effect appears only as an additive constant to the spectrum
of Aharonov-Bohm potential. The corresponding persistent currents, the
observable quantities of the symmetry-breaking energy spectra, are shown to be
asymmetric about zero magnetic flux in the scalar coupling, while symmetric in
the vector coupling.Comment: 20 pages, 12 figures (V2) 18 pages, accepted in JPHYS
Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium
Orion's Veil is an absorbing screen that lies along the line of sight to the
Orion H II region. It consists of two or more layers of gas that must lie
within a few parsecs of the Trapezium cluster. Our previous work considered the
Veil as a whole and found that the magnetic field dominates the energetics of
the gas in at least one component. Here we use high-resolution STIS UV spectra
that resolve the two velocity components in absorption and determine the
conditions in each. We derive a volume hydrogen density, 21 cm spin
temperature, turbulent velocity, and kinetic temperature, for each. We combine
these estimates with magnetic field measurements to find that magnetic energy
significantly dominates turbulent and thermal energies in one component, while
the other component is close to equipartition between turbulent and magnetic
energies. We observe molecular hydrogen absorption for highly excited v, J
levels that are photoexcited by the stellar continuum, and detect blueshifted S
III and P III. These ions must arise from ionized gas between the mostly
neutral portions of the Veil and the Trapezium and shields the Veil from
ionizing radiation. We find that this layer of ionized gas is also responsible
for He I absorption in the Veil, which resolves a 40-year-old debate on the
origin of He I absorption towards the Trapezium. Finally, we determine that the
ionized and mostly atomic layers of the Veil will collide in less than 85,000
years.Comment: 43 pages, 15 figures, to be published in Ap
Pion electromagnetic form factor at finite temperature
Temperature effects on the electromagnetic couplings of pions in hot hadronic
matter are studied with an effective chiral Lagrangian. We show that the
Ward-Takahashi identity is satisfied at non-zero temperature in the soft pion
limit. The in-medium electromagnetic form factor of the pion is obtained in the
time-like region and shown to be reduced in magnitude, especially near the
vector-meson resonance region. Finally, we discuss the consequences of this
medium effect on dilepton production from hot hadronic matter.Comment: 29 pages (LaTex) + 11 figure
Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum
We report a measurement of low-mass electron pairs observed in 158
GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of
invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4
(stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As
observed previously in S-Au collisions, the enhancement is most pronounced in
the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong
increase of the enhancement with centrality. In addition, we show that the
enhancement covers a wide range in transverse momentum, but is largest at the
lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.
- …
