3,212 research outputs found

    High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes

    Full text link
    We characterize the current-carrying capacity (CCC), or ampacity, of highly-conductive, light, and strong carbon nanotube (CNT) fibers by measuring their failure current density (FCD) and continuous current rating (CCR) values. We show, both experimentally and theoretically, that the CCC of these fibers is determined by the balance between current-induced Joule heating and heat exchange with the surroundings. The measured FCD values of the fibers range from 107^7 to 109^9 A/m2^2 and are generally higher than the previously reported values for aligned buckypapers, carbon fibers, and CNT fibers. To our knowledge, this is the first time the CCR for a CNT fiber has been reported. We demonstrate that the specific CCC (i.e., normalized by the linear mass density) of our CNT fibers are higher than those of copper.Comment: 14 pages, 8 figure

    Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Full text link
    Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e. with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. Planets orbiting stars with masses <0.3 solar masses may be in danger of desiccation via tidal heating. We apply these concepts to Gl 667C c, a ~4.5 Earth-mass planet orbiting a 0.3 solar mass star at 0.12 AU. We find that it probably did not lose its water via tidal heating as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for non-circular orbits. In the appendices we review a) the moist and runaway greenhouses, b) hydrogen escape, c) stellar mass-radius and mass-luminosity relations, d) terrestrial planet mass-radius relations, and e) linear tidal theories. [abridged]Comment: 59 pages, 11 figures, accepted to Astrobiology. New version includes an appendix on the water loss timescal

    A New Metaheuristic Bat-Inspired Algorithm

    Full text link
    Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.Comment: 10 pages, 2 figure

    Time-delayed feedback control in astrodynamics

    Get PDF
    In this paper we present time-delayed feedback control (TDFC) for the purpose of autonomously driving trajectories of nonlinear systems into periodic orbits. As the generation of periodic orbits is a major component of many problems in astodynamics we propose this method as a useful tool in such applications. To motivate the use of this method we apply it to a number of well known problems in the astrodynamics literature. Firstly, TDFC is applied to control in the chaotic attitude motion of an asymmetric satellite in an elliptical orbit. Secondly, we apply TDFC to the problem of maintaining a spacecraft in a periodic orbit about a body with large ellipticity (such as an asteroid) and finally, we apply TDFC to eliminate the drift between two satellites in low Earth orbits to ensure their relative motion is bounded

    Expansion of Human Airway Basal Stem Cells and Their Differentiation as 3D Tracheospheres

    Get PDF
    Although basal cells function as human airway epithelial stem cells, analysis of these cells is limited by in vitro culture techniques that permit only minimal cell growth and differentiation. Here, we report a protocol that dramatically increases the long-term expansion of primary human airway basal cells while maintaining their genomic stability using 3T3-J2 fibroblast coculture and ROCK inhibition. We also describe techniques for the differentiation and imaging of these expanded airway stem cells as three-dimensional tracheospheres containing basal, ciliated, and mucosecretory cells. These procedures allow investigation of the airway epithelium under more physiologically relevant conditions than those found in undifferentiated monolayer cultures. Together these methods represent a novel platform for improved airway stem cell growth and differentiation that is compatible with high-throughput, high-content translational lung research as well as human airway tissue engineering and clinical cellular therapy

    Geometry of integrable dynamical systems on 2-dimensional surfaces

    Full text link
    This paper is devoted to the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on 2-dimensional surfaces, under some nondegeneracy conditions. The main continuous invariants involved in this classification are the left equivalence classes of period or monodromy functions, and the cohomology classes of period cocycles, which can be expressed in terms of Puiseux series. We also study the problem of Hamiltonianization of these integrable vector fields by a compatible symplectic or Poisson structure.Comment: 31 pages, 12 figures, submitted to a special issue of Acta Mathematica Vietnamic

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Get PDF
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits
    corecore