114,028 research outputs found
Multilevel quantum Otto heat engines with identical particles
A quantum Otto heat engine is studied with multilevel identical particles
trapped in one-dimensional box potential as working substance. The symmetrical
wave function for Bosons and the anti-symmetrical wave function for Fermions
are considered. In two-particle case, we focus on the ratios of ()
to , where and are the work done by two Bosons and Fermions
respectively, and is the work output of a single particle under the same
conditions. Due to the symmetric of the wave functions, the ratios are not
equal to . Three different regimes, low temperature regime, high temperature
regime, and intermediate temperature regime, are analyzed, and the effects of
energy level number and the differences between the two baths are calculated.
In the multiparticle case, we calculate the ratios of to , where
can be seen as the average work done by a single particle in
multiparticle heat engine.
For other working substances whose energy spectrum have the form of , the results are similar. For the case , two different
conclusions are obtained
Monte-Carlo approach to calculate the ionization of warm dense matter within particle-in-cell simulations
A physical model based on a Monte-Carlo approach is proposed to calculate the
ionization dynam- ics of warm dense matters (WDM) within particle-in-cell
simulations, and where the impact (col- lision) ionization (CI), electron-ion
recombination (RE) and ionization potential depression (IPD) by surrounding
plasmas are taken into consideration self-consistently. When compared with
other models, which are applied in the literature for plasmas near thermal
equilibrium, the temporal re- laxation of ionization dynamics can also be
simulated by the proposed model. Besides, this model is general and can be
applied for both single elements and alloys with quite different composi-
tions. The proposed model is implemented into a particle-in-cell (PIC) code,
with (final) ionization equilibriums sustained by competitions between CI and
its inverse process (i.e., RE). Comparisons between the full model and model
without IPD or RE are performed. Our results indicate that for bulk aluminium
in the WDM regime, i) the averaged ionization degree increases by including
IPD; while ii) the averaged ionization degree is significantly over estimated
when the RE is neglected. A direct comparison from the PIC code is made with
the existing models for the dependence of averaged ionization degree on thermal
equilibrium temperatures, and shows good agreements with that generated from
Saha-Boltzmann model or/and FLYCHK code.Comment: 7 pages, 4 figure
Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance
Recommended from our members
Bioinspired Multifunctional Anti-icing Hydrogel
The recent anti-icing strategies in the state of the art mainly focused on three aspects: inhibiting ice nucleation, preventing ice propagation, and decreasing ice adhesion strength. However, it is has proved difficult to prevent ice nucleation and propagation while decreasing adhesion simultaneously, due to their highly distinct, even contradictory design principles. In nature, anti-freeze proteins (AFPs) offer a prime example of multifunctional integrated anti-icing materials that excel in all three key aspects of the anti-icing process simultaneously by tuning the structures and dynamics of interfacial water. Here, inspired by biological AFPs, we successfully created a multifunctional anti-icing material based on polydimethylsiloxane-grafted polyelectrolyte hydrogel that can tackle all three aspects of the anti-icing process simultaneously. The simplicity, mechanical durability, and versatility of these smooth hydrogel surfaces make it a promising option for a wide range of anti-icing applications
- …
