5,825 research outputs found

    Evidence of coupling between the thermal and nonthermal emission in the gamma-ray binary LS I +61 303

    Get PDF
    The gamma-ray binary LS I +61 303 is composed of a Be star and a compact companion orbiting in an eccentric orbit. Variable flux modulated with the orbital period of ~26.5 d has been detected from radio to very high-energy gamma rays. In addition, the system presents a superorbital variability of the phase and amplitude of the radio outburst with a period of ~4.6 yr. We present optical photometric observations of LS I +61 303 spanning ~1.5 yr and contemporaneous Halpha equivalent width (EW Halpha) data. The optical photometry shows, for the first time, that the known orbital modulation suffers a positive orbital phase shift and an increase in flux for data obtained 1-yr apart. This behavior is similar to that already known at radio wavelengths, indicating that the optical flux follows the superorbital variability as well. The orbital modulation of the EW Halpha presents the already known superorbital flux variability but shows, also for the first time, a positive orbital phase shift. In addition, the optical photometry exhibits a lag of ~0.1-0.2 in orbital phase with respect to the EW Halpha measurements at similar superorbital phases, and presents a lag of ~0.1 and ~0.3 orbital phases with respect noncontemperaneous radio and X-ray outbursts, respectively. The phase shifts detected in the orbital modulation of thermal indicators, such as the optical flux and the EW Halpha, are in line with the observed behavior for nonthermal indicators, such as X-ray or radio emission. This shows that there is a strong coupling between the thermal and nonthermal emission processes in the gamma-ray binary LS I +61 303. The orbital phase lag between the optical flux and the EW Halpha is naturally explained considering different emitting regions in the circumstellar disk, whereas the secular evolution might be caused by the presence of a moving one-armed spiral density wave in the disk.Comment: 4 pages, 3 figures, accepted for publication in A&A (this version matches the published version

    Poemas.

    Get PDF
    Sin resume

    Decoupled and unidirectional asymptotic models for the propagation of internal waves

    Full text link
    We study the relevance of various scalar equations, such as inviscid Burgers', Korteweg-de Vries (KdV), extended KdV, and higher order equations (of Camassa-Holm type), as asymptotic models for the propagation of internal waves in a two-fluid system. These scalar evolution equations may be justified with two approaches. The first method consists in approximating the flow with two decoupled, counterpropagating waves, each one satisfying such an equation. One also recovers homologous equations when focusing on a given direction of propagation, and seeking unidirectional approximate solutions. This second justification is more restrictive as for the admissible initial data, but yields greater accuracy. Additionally, we present several new coupled asymptotic models: a Green-Naghdi type model, its simplified version in the so-called Camassa-Holm regime, and a weakly decoupled model. All of the models are rigorously justified in the sense of consistency

    Supersymmetric defects in the Maldacena-Nunez background

    Full text link
    We find supersymmmetric configurations of a D5-brane probe in the Maldacena-Nunez background which are extended along one or two of the spatial directions of the gauge theory. These embeddings are worldvolume solitons which behave as codimension two or one defects in the gauge theory and preserve two of the four supersymmetries of the background.Comment: 37 pages, 2 figures, LaTeX; v2: references adde

    On the origin of the X-ray emission from a narrow-line radioquasar at z>1

    Full text link
    We present new XMM-Newton X-ray observations of the z=1.246 narrow-line radioquasar RX J1011.2+5545 serendipitously discovered by ROSAT. The flat X-ray spectrum previously measured by ROSAT and ASCA is shown to be the result of a steep Gamma~1.8 power law spectrum seen through a moderate intrinsic absorbing column NH~4E21 cm^-2. The position of the X-ray source is entirely coincident with the nucleus of the radio source that we have resolved in new sensitive VLA observations at 3.6 and 6 cm, implying that scattering in the radio lobes is not responsible for the bulk of X-ray emission. In the EPIC pn image, a faint patch of X-ray emission is apparent 14'' to the NE of the main X-ray source. The former is positionally coincident with an apparently extended optical object with R~21.9, but there is no associated radio emission, thus ruling out the possibility that this represents a hotspot in a jet emanating from the primary X-ray source. No reflection features are detected in the X-ray spectrum of the narrow-line radioquasar, although an Fe line with equivalent width of up to 600 eV cannot be ruled out.Comment: 7 pages, 6 figures, MNRAS in the pres

    INTEGRAL and XMM-Newton observations towards the unidentified MeV source GRO J1411-64

    Get PDF
    The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4σ\sigma location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood >10> 10) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail

    Physical State of Molecular Gas in High Galactic Latitude Translucent Clouds

    Get PDF
    The rotational transitions of carbon monoxide (CO) are the primary means of investigating the density and velocity structure of the molecular interstellar medium. Here we study the lowest four rotational transitions of CO towards high-latitude translucent molecular clouds (HLCs). We report new observations of the J = (4-3), (2-1), and (1-0) transitions of CO towards eight high-latitude clouds. The new observations are combined with data from the literature to show that the emission from all observed CO transitions is linearly correlated. This implies that the excitation conditions which lead to emission in these transitions are uniform throughout the clouds. Observed 13CO/12CO (1-0) integrated intensity ratios are generally much greater than the expected abundance ratio of the two species, indicating that the regions which emit 12CO (1-0) radiation are optically thick. We develop a statistical method to compare the observed line ratios with models of CO excitation and radiative transfer. This enables us to determine the most likely portion of the physical parameter space which is compatible with the observations. The model enables us to rule out CO gas temperatures greater than 30K since the most likely high-temperature configurations are 1 pc-sized structures aligned along the line of sight. The most probable solution is a high density and low temperature (HDLT) solution. The CO cell size is approximately 0.01 pc (2000 AU). These cells are thus tiny fragments within the 100 times larger CO-emitting extent of a typical high-latitude cloud. We discuss the physical implications of HDLT cells, and we suggest ways to test for their existence.Comment: 19 pages, 13 figures, 2 tables, emulateapj To be published in The Astrophysical Journa

    Landau Analog Levels for Dipoles in the Noncommutative Space and Phase Space

    Full text link
    In the present contribution we investigate the Landau analog energy quantization for neutral particles, that possesses a nonzero permanent magnetic and electric dipole moments, in the presence of an homogeneous electric and magnetic external fields in the context of the noncommutative quantum mechanics. Also, we analyze the Landau--Aharonov--Casher and Landau--He--McKellar--Wilkens quantization due to noncommutative quantum dynamics of magnetic and electric dipoles in the presence of an external electric and magnetic fields and the energy spectrum and the eigenfunctions are obtained. Furthermore, we have analyzed Landau quantization analogs in the noncommutative phase space, and we obtain also the energy spectrum and the eigenfunctions in this context.Comment: 20 pages, references adde

    Semiconductor-based Geometrical Quantum Gates

    Get PDF
    We propose an implementation scheme for holonomic, i.e., geometrical, quantum information processing based on semiconductor nanostructures. Our quantum hardware consists of coupled semiconductor macroatoms addressed/controlled by ultrafast multicolor laser-pulse sequences. More specifically, logical qubits are encoded in excitonic states with different spin polarizations and manipulated by adiabatic time-control of the laser amplitudes . The two-qubit gate is realized in a geometric fashion by exploiting dipole-dipole coupling between excitons in neighboring quantum dots.Comment: 4 Pages LaTeX, 3 Figures included. To appear in PRB (Rapid Comm.

    1/2-Anyons in small atomic Bose-Einstein condensates

    Full text link
    We discuss a way of creating, manipulating and detecting anyons in rotating Bose-Einstein condensates consisting of a small number of atoms . By achieving a quasidegeneracy in the atomic motional states we drive the system into a 1/2--Laughlin state for fractional quantum Hall bosons. Localized 1/2--quasiholes can be created by focusing lasers at the desired positions. We show how to manipulate these quasiholes in order to probe directly their 1/2--statistics.Comment: 4 pages, 3 figure
    corecore