2,498 research outputs found
Sustainable Bus Design focused on Improved Accessibility
The world population is ageing and designing accessible public transport modes is a real challenge for all societies nowadays. The influence of bus movement on the movement of passengers is analysed in this study. Experiments on a static platform and a moving bus were carried out and body motion and foot pressure tracking systems were used to collect information about bus acceleration and the plantar forces of the person. From the experiments it was shown that the movement of the bus does not vary with the vertical position in the bus but it affects a passenger’s gait and balance especially whilst ascending and descending the staircase
Recommended from our members
Depth spreading through empty space induced by sparse disparity cues
A key goal of visual processing is to develop an understanding of the three-dimensional layout of the objects in our immediate vicinity from the variety of incomplete and noisy depth cues available to the eyes. Binocular disparity is one of the dominant depth cues, but it is often sparse, being definable only at the edges of uniform surface regions, and visually resolvable only where the edges have a horizontal disparity component. To understand the full 3D structure of visual objects, our visual system has to perform substantial surface interpolation across unstructured visual space. This interpolation process was studied in an eight-spoke depth spreading configuration corresponding to that used in the neon color spreading effect, which generates a strong percept of a sharp contour extending through empty space from the disparity edges within the spokes. Four hypotheses were developed for the form of the depth surface induced by disparity in the spokes defining an incomplete disk in depth: low-level local (isotropic) depth propagation, mid-level linear (anisotropic) depth-contour interpolation or extrapolation, and high-level (anisotropic) figural depth propagation of a disk figure in depth. Data for both perceived depth and position of the perceived contour clearly rejected the first three hypotheses and were consistent with the high-level figural hypothesis in both uniform disparity and slanted disk configurations. We conclude that depth spreading through empty visual space is an accurately quantifiable perceptual process that propagates depth contours anisotropically along their length and is governed by high-level figural properties of 3D object structure
Analysis of model rotor blade pressures during parallel interaction with twin vortices
This paper presents and provides analysis of unsteady surface pressures measured on a model rotor blade as the blade experienced near parallel blade vortex interaction with a twin vortex system. To provide a basis for analysis, the vortex system was characterized by hot-wire measurements made in the interaction plane but in the absence of the rotor. The unsteady pressure response resulting from a single vortex interaction is then presented to provide a frame of reference for the twin vortex results. A series of twin vortex interaction cases are then presented and analyzed. It is shown that the unsteady blade pressures and forces are very sensitive to the inclination angle and separation distance of the vortex pair. When the vortex cores lie almost parallel to the blade chord, the interaction is characterized by a two-stage response associated with the sequential passage of the two cores. Conversely, when the cores lie on a plane that is almost perpendicular to the blade chord, the response is similar to that of a single vortex interaction. In all cases, the normal force response is consistent with the distribution of vertical velocity in the flow field of the vortex system. The pitching moment response, on the other hand, depends on the localized suction associated with the vortex cores as they traverse the blade chord
Continuous-variable quantum teleportation of entanglement
Entangled coherent states can be used to determine the entanglement fidelity
for a device that is designed to teleport coherent states. This entanglement
fidelity is universal, in that the calculation is independent of the use of
entangled coherent states and applies generally to the teleportation of
entanglement using coherent states. The average fidelity is shown to be a poor
indicator of the capability of teleporting entanglement; i.e., very high
average fidelity for the quantum teleportation apparatus can still result in
low entanglement fidelity for one mode of the two-mode entangled coherent
state.Comment: 5 pages, 1 figure, published versio
Gamma rays from dark matter annihilation in the Draco and observability at ARGO
The CACTUS experiment recently observed a gamma ray excess above 50 GeV from
the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is
dark matter dominated the gamma rays may be generated through dark matter
annihilation in the Draco halo. In the framework of the minimal supersymmetric
extension of the standard model we explore the parameter space to account for
the gamma ray signals at CACTUS. We find that the neutralino mass is
constrained to be approximately in the range between 100 GeV ~ 400 GeV and a
sharp central cuspy of the dark halo profile in Draco is necessary to explain
the CACTUS results. We then discuss further constraints on the supersymmetric
parameter space by observations at the ground based ARGO detector. It is found
that the parameter space can be strongly constrained by ARGO if no excess from
Draco is observed above 100 GeV.Comment: 15 pages, 4 figure
Mining and analysis of audiology data to find significant factors associated with tinnitus masker
Objectives: The objective of this research is to find the factors associated with tinnitus masker from the literature, and by using the large amount of audiology data available from a large NHS (National Health Services, UK) hearing aid clinic. The factors evaluated were hearing impairment, age, gender, hearing aid type, mould and clinical comments.
Design: The research includes literature survey for factors associated with tinnitus masker, and performs the analysis of audiology data using statistical and data mining techniques.
Setting: This research uses a large audiology data but it also faced the problem of limited data for tinnitus.
Participants: It uses 1,316 records for tinnitus and other diagnoses, and 10,437 records of clinical comments from a hearing aid clinic.
Primary and secondary outcome measures: The research is looking for variables associated with tinnitus masker, and in future, these variables can be combined into a single model to develop a decision support system to predict about tinnitus masker for a patient.
Results: The results demonstrated that tinnitus maskers are more likely to be fit to individuals with milder forms of hearing loss, and the factors age, gender, type of hearing aid and mould were all found significantly associated with tinnitus masker. In particular, those patients having Age<=55 years were more likely to wear a tinnitus masker, as well as those with milder forms of hearing loss. ITE (in the ear) hearing aids were also found associated with tinnitus masker. A feedback on the results of association of mould with tinnitus masker from a professional audiologist of a large NHS (National Health Services, UK) was also taken to better understand them. The results were obtained with different accuracy for different techniques. For example, the chi-squared test results were obtained with 95% accuracy, for Support and Confidence only those results were retained which had more than 1% Support and 80% Confidence.
Conclusions: The variables audiograms, age, gender, hearing aid type and mould were found associated with the
choice of tinnitus masker in the literature and by using statistical and data mining techniques. The further work in this research would lead to the development of a decision support system for tinnitus masker with an explanation that how that decision was obtained
Recommended from our members
Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis.
Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 5' end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development
Demonstration of integrated microscale optics in surface-electrode ion traps
In ion trap quantum information processing, efficient fluorescence collection
is critical for fast, high-fidelity qubit detection and ion-photon
entanglement. The expected size of future many-ion processors require scalable
light collection systems. We report on the development and testing of a
microfabricated surface-electrode ion trap with an integrated high numerical
aperture (NA) micromirror for fluorescence collection. When coupled to a low NA
lens, the optical system is inherently scalable to large arrays of mirrors in a
single device. We demonstrate stable trapping and transport of 40Ca+ ions over
a 0.63 NA micromirror and observe a factor of 1.9 enhancement in photon
collection compared to the planar region of the trap.Comment: 15 pages, 8 figure
- …
