31,094 research outputs found

    In-Beam Background Suppression Shield

    Get PDF
    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .Comment: 12 pages, 8 figures, proceeding of NDS 2015, 4th International Workshop on Neutron Delivery Systems, 28 -30 September 2015, ILL Grenoble, Franc

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3626.90311±0.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=163822.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6

    Influence of statistical sequential decay on isoscaling and symmetry energy coefficient in a GEMINI simulation

    Full text link
    Extensive calculations on isoscaling behavior with the sequential-decay model gemini are performed for the medium-to-heavy nuclei in the mass range A = 60-120 at excitation energies up to 3 MeV/nucleon. The comparison between the products after the first-step decay and the ones after the entire-steps decay demonstrates that there exists a strong sequential decay effect on the final isoscaling parameters and the apparent temperature. Results show that the apparent symmetry energy coefficient γapp\gamma_{app} does not reflect the initial symmetry energy coefficient CsymC_{sym} embedded in the mass calculation in the present GEMINI model.Comment: 4 pages, 3 figures, 1 tabl

    Critical comments on the paper "Crossing ω=1\omega=-1 by a single scalar field on a Dvali-Gabadadze-Porrati brane" by H Zhang and Z-H Zhu [Phys.Rev.D75,023510(2007)]

    Full text link
    It is demonstrated that the claim in the paper "Crossing ω=1\omega=-1 by a single scalar field on a Dvali-Gabadadze-Porrati brane" by H Zhang and Z-H Zhu [Phys.Rev.D75,023510(2007)], about a prove that there do not exist scaling solutions in a universe with dust in a Dvali-Gabadadze-Porrati (DGP) braneworld scenario, is incorrect.Comment: 5 pages, 8 eps figure

    Modeling water resources management at the basin level: review and future directions

    Get PDF
    Water quality / Water resources development / Agricultural production / River basin development / Mathematical models / Simulation models / Water allocation / Policy / Economic aspects / Hydrology / Reservoir operation / Groundwater management / Drainage / Conjunctive use / Surface water / GIS / Decision support systems / Optimization methods / Water supply

    Nucleon-nucleon momentum correlation function as a probe of the density distribution of valence neutron in neutron-rich nucleus

    Full text link
    Proton-neutron, neutron-neutron and proton-proton momentum correlation functions (CpnC_{pn}, CnnC_{nn}, CppC_{pp}) are systematically investigated for 15^{15}C and other C isotopes induced collisions at different entrance channel conditions within the framework of the isospin-dependent quantum molecular dynamics (IDQMD) model complemented by the CRAB (correlation after burner) computation code. 15^{15}C is a prime exotic nucleus candidate due to the weakly bound valence neutron coupling with closed-neutron shell nucleus 14^{14}C. In order to study density dependence of correlation function by removing the isospin effect, the initialized 15^{15}C projectiles are sampled from two kinds of density distribution from RMF model, in which the valence neutron of 15^{15}C is populated on both 1dd5/2 and 2ss1/2 states, respectively. The results show that the density distributions of valence neutron significantly influence nucleon-nucleon momentum correlation function at large impact parameter and high incident energy. The extended density distribution of valence neutron largely weakens the strength of correlation function. The size of emission source is extracted by fitting correlation function using Gaussian source method. The emission source size as well as the size of final state phase space is larger for projectiles sampling from more extended density distribution of valence neutron corresponding 2ss1/2 state in RMF model. Therefore momentum correlation function can be considered as a potential valuable tool to diagnose the exotic nuclear structure such as skin and halo.Comment: 8 pages, 9 figures, 1 tabl

    The roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy

    Full text link
    The reaction dynamics of axisymmetric deformed 24^{24}Mg + 24^{24}Mg collisions have been investigated systematically by an isospin-dependent quantum molecular dynamics (IDQMD) model. It is found that different deformations and orientations result in apparently different properties of reaction dynamics. We revealed that some observables such as nuclear stopping power (RR), multiplicity of fragments, and elliptic flow are very sensitive to the initial deformations and orientations. There exists an eccentricity scaling of elliptic flow in central body-body collisions with different deformations. In addition, the tip-tip and body-body configurations turn out to be two extreme cases in central reaction dynamical process.Comment: 5 pages, 7 figures, to appear in Physical Review C (Rapid Communication

    Parton Distributions at Hadronization from Bulk Dense Matter Produced at RHIC

    Full text link
    We present an analysis of Ω\Omega, Ξ\Xi, Λ\Lambda and ϕ\phi spectra from Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV in terms of distributions of effective constituent quarks at hadronization. Consistency in quark ratios derived from various hadron spectra provides clear evidence for hadron formation dynamics as suggested by quark coalescence or recombination models. We argue that the constituent quark distribution reflects properties of the effective partonic degrees of freedom at hadronization. Experimental data indicate that strange quarks have a transverse momentum distribution flatter than that of up/down quarks consistent with hydrodynamic expansion in partonic phase prior to hadronization. After the AMPT model is tuned to reproduce the strange and up/down quark distributions, the model can describe the measured spectra of hyperons and ϕ\phi mesons very well where hadrons are formed through dynamical coalescence.Comment: 5 pages, 3 figures, two more paragraph added to address the referee's comment, figure updated to include the KET scale. Accepted version to appear in Phys. Rev.
    corecore