29,785 research outputs found
Orbital Angular Momentum in Scalar Diquark Model and QED
We compare the orbital angular momentum of the 'quark' in the scalar diquark
model as well as that of the electron in QED (to order {\alpha}) obtained from
the Jaffe-Manohar de- composition to that obtained from the Ji relation. We
estimate the importance of the vector potential in the definition of orbital
angular momentum
Lorentz Symmetry and the Internal Structure of the Nucleon
To investigate the internal structure of the nucleon, it is useful to
introduce quantities that do not transform properly under Lorentz symmetry,
such as the four-momentum of the quarks in the nucleon, the amount of the
nucleon spin contributed by quark spin, etc. In this paper, we discuss to what
extent these quantities do provide Lorentz-invariant descriptions of the
nucleon structure.Comment: 6 pages, no figur
Quark Orbital-Angular-Momentum Distribution in the Nucleon
We introduce gauge-invariant quark and gluon angular momentum distributions
after making a generalization of the angular momentum density operators. From
the quark angular momentum distribution, we define the gauge-invariant and
leading-twist quark {\it orbital} angular momentum distribution . The
latter can be extracted from data on the polarized and unpolarized quark
distributions and the off-forward distribution in the forward limit. We
comment upon the evolution equations obeyed by this as well as other orbital
distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad
Glueball Spin
The spin of a glueball is usually taken as coming from the spin (and possibly
the orbital angular momentum) of its constituent gluons. In light of the
difficulties in accounting for the spin of the proton from its constituent
quarks, the spin of glueballs is reexamined. The starting point is the
fundamental QCD field angular momentum operator written in terms of the
chromoelectric and chromomagnetic fields. First, we look at the restrictions
placed on the structure of glueballs from the requirement that the QCD field
angular momentum operator should satisfy the standard commutation
relationships. This can be compared to the electromagnetic charge/monopole
system, where the quantization of the field angular momentum places
restrictions (i.e. the Dirac condition) on the system. Second, we look at the
expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio
Delay-dependent robust stability of stochastic delay systems with Markovian switching
In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method
Disentangling positivity constraints for generalized parton distributions
Positivity constraints are derived for the generalized parton distributions
(GPDs) of spin-1/2 hadrons. The analysis covers the full set of eight twist-2
GPDs. Several new inequalities are obtained which constrain GPDs by various
combinations of usual (forward) unpolarized and polarized parton distributions
including the transversity distribution.Comment: 9 pages (REVTEX), typos correcte
Polynomiality of unpolarized off-forward distribution functions and the D-term in the chiral quark-soliton model
Mellin moments of off-forward distribution functions are even polynomials of
the skewedness parameter. This constraint, called polynomiality property,
follows from Lorentz- and time-reversal invariance. We prove that the
unpolarized off-forward distribution functions in the chiral quark-soliton
model satisfy the polynomiality property. The proof is an important
contribution to the demonstration that the description of off-forward
distribution functions in the model is consistent. As a byproduct of the proof
we derive explicit model expressions for moments of the D-term and compute the
first coefficient in the Gegenbauer expansion for this term.Comment: 18 pages, no figures. Corrections and improvements in section 6. To
appear in Phys.Rev.
Generalized vector form factors of the pion in a chiral quark model
Generalized vector form factors of the pion, related to the moments of the
generalized parton distribution functions, are evaluated in the
Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest
moments (the electromagnetic and the gravitational form factors) are compared
to recent lattice data, with fair agreement. Predictions for higher-order
moments are also made. Relevant features of the generalized form factors in the
chiral quark models are highlighted and the role of the QCD evolution for the
higher-order GFFs is stressed.Comment: Dedicated to the memory of Manoj K. Banerjee, to appear in a special
issue of the Indian Journal of Physics, 6 pages, 4 figure
Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model
The third moment of the twist-3 part of the nucleon spin structure
function is generalized to arbitrary momentum transfer and is
evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order
and in a unitary isobar model (MAID). We show how to link
as well as higher moments of the nucleon spin structure functions
and to nucleon spin polarizabilities. We compare our results with the
most recent experimental data, and find a good description of these available
data within the unitary isobar model. We proceed to extract the twist-4 matrix
element which appears in the suppressed term in the twist
expansion of the spin structure function for proton and neutron.Comment: 30 pages, 7 figure
- …
