29,785 research outputs found

    Orbital Angular Momentum in Scalar Diquark Model and QED

    Full text link
    We compare the orbital angular momentum of the 'quark' in the scalar diquark model as well as that of the electron in QED (to order {\alpha}) obtained from the Jaffe-Manohar de- composition to that obtained from the Ji relation. We estimate the importance of the vector potential in the definition of orbital angular momentum

    Lorentz Symmetry and the Internal Structure of the Nucleon

    Full text link
    To investigate the internal structure of the nucleon, it is useful to introduce quantities that do not transform properly under Lorentz symmetry, such as the four-momentum of the quarks in the nucleon, the amount of the nucleon spin contributed by quark spin, etc. In this paper, we discuss to what extent these quantities do provide Lorentz-invariant descriptions of the nucleon structure.Comment: 6 pages, no figur

    Quark Orbital-Angular-Momentum Distribution in the Nucleon

    Get PDF
    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\it orbital} angular momentum distribution Lq(x)L_q(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x)E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad

    Glueball Spin

    Get PDF
    The spin of a glueball is usually taken as coming from the spin (and possibly the orbital angular momentum) of its constituent gluons. In light of the difficulties in accounting for the spin of the proton from its constituent quarks, the spin of glueballs is reexamined. The starting point is the fundamental QCD field angular momentum operator written in terms of the chromoelectric and chromomagnetic fields. First, we look at the restrictions placed on the structure of glueballs from the requirement that the QCD field angular momentum operator should satisfy the standard commutation relationships. This can be compared to the electromagnetic charge/monopole system, where the quantization of the field angular momentum places restrictions (i.e. the Dirac condition) on the system. Second, we look at the expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio

    Delay-dependent robust stability of stochastic delay systems with Markovian switching

    Get PDF
    In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method

    Disentangling positivity constraints for generalized parton distributions

    Full text link
    Positivity constraints are derived for the generalized parton distributions (GPDs) of spin-1/2 hadrons. The analysis covers the full set of eight twist-2 GPDs. Several new inequalities are obtained which constrain GPDs by various combinations of usual (forward) unpolarized and polarized parton distributions including the transversity distribution.Comment: 9 pages (REVTEX), typos correcte

    Polynomiality of unpolarized off-forward distribution functions and the D-term in the chiral quark-soliton model

    Get PDF
    Mellin moments of off-forward distribution functions are even polynomials of the skewedness parameter. This constraint, called polynomiality property, follows from Lorentz- and time-reversal invariance. We prove that the unpolarized off-forward distribution functions in the chiral quark-soliton model satisfy the polynomiality property. The proof is an important contribution to the demonstration that the description of off-forward distribution functions in the model is consistent. As a byproduct of the proof we derive explicit model expressions for moments of the D-term and compute the first coefficient in the Gegenbauer expansion for this term.Comment: 18 pages, no figures. Corrections and improvements in section 6. To appear in Phys.Rev.

    Generalized vector form factors of the pion in a chiral quark model

    Full text link
    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.Comment: Dedicated to the memory of Manoj K. Banerjee, to appear in a special issue of the Indian Journal of Physics, 6 pages, 4 figure

    Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Full text link
    The third moment d2d_2 of the twist-3 part of the nucleon spin structure function g2g_2 is generalized to arbitrary momentum transfer Q2Q^2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order O(p4){\mathcal{O}}(p^4) and in a unitary isobar model (MAID). We show how to link d2d_2 as well as higher moments of the nucleon spin structure functions g1g_1 and g2g_2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2f_2 which appears in the 1/Q21/Q^2 suppressed term in the twist expansion of the spin structure function g1g_1 for proton and neutron.Comment: 30 pages, 7 figure
    corecore