82,569 research outputs found
Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America
Compressional waves that sample the lowermost mantle west of Central America show a rapid change in travel times of up to 4 s over a sampling distance of 300 km and a change in waveforms. The differential travel times of the PKP waves (which traverse Earth's core) correlate remarkably well with predictions for S-wave tomography. Our modeling suggests a sharp transition in the lowermost mantle from a broad slow region to a broad fast region with a narrow zone of slowest anomaly next to the boundary beneath the Cocos Plate and the Caribbean Plate. The structure may be the result of ponding of ancient subducted Farallon slabs situated near the edge of a thermal and chemical upwelling
1458 EMT-inhibiting transcription factor Ovol2 regulates directional cell migration and proliferation in adult skin epithelia
Localization of Macroscopic Object Induced by the Factorization of Internal Adiabatic Motion
To account for the phenomenon of quantum decoherence of a macroscopic object,
such as the localization and disappearance of interference, we invoke the
adiabatic quantum entanglement between its collective states(such as that of
the center-of-mass (C.M)) and its inner states based on our recent
investigation. Under the adiabatic limit that motion of C.M dose not excite the
transition of inner states, it is shown that the wave function of the
macroscopic object can be written as an entangled state with correlation
between adiabatic inner states and quasi-classical motion configurations of the
C.M. Since the adiabatic inner states are factorized with respect to each parts
composing the macroscopic object, this adiabatic separation can induce the
quantum decoherence. This observation thus provides us with a possible solution
to the Schroedinger cat paradoxComment: Revtex4,23 pages,1figur
Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520
In this paper, we address the formation of a magnetic flux rope (MFR) that
erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15.
Through analyzing the long-term evolution of the associated active region
observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic
Imager on board the Solar Dynamics Observatory, it is found that the twisted
field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from
two groups of sheared arcades near the main polarity inversion line half day
before the eruption. The temperature within the twisted field and sheared
arcades is higher than that of the ambient volume, suggesting that magnetic
reconnection most likely works there. The driver behind the reconnection is
attributed to shearing and converging motions at magnetic footpoints with
velocities in the range of 0.1--0.6 km s. The rotation of the preceding
sunspot also contributes to the MFR buildup. Extrapolated three-dimensional
non-linear force-free field structures further reveal the locations of the
reconnection to be in a bald-patch region and in a hyperbolic flux tube. About
two hours before the eruption, indications for a second MFR in the form of an
S-shaped hot channel are seen. It lies above the original MFR that continuously
exists and includes a filament. The whole structure thus makes up a stable
double-decker MFR system for hours prior to the eruption. Eventually, after
entering the domain of instability, the high-lying MFR impulsively erupts to
generate a fast coronal mass ejection and X-class flare; while the low-lying
MFR remains behind and continuously maintains the sigmoidicity of the active
region.Comment: accepted for publication in ApJ. 12 pages, 9 figures, and 1 table.
ISEST defines this eruption as a textbook event, please see the website
http://solar.gmu.edu/heliophysics/index.php for associated magnetic cloud
analysi
- …
