34,135 research outputs found

    Laser ignition of an optically sensitised secondary explosive by a diode laser

    Get PDF
    As a green technology, laser ignition of a relatively insensitive secondary explosive has been experimentally investigated. The explosive, hexanitrostilbene (HNS), was doped with one of two optical sensitizers, carbon black or a laser absorbing dye, and a continuous-wave (CW) infrared diode laser was used as the igniting source. The ignition sensitivities of HNS with each of the two optical sensitizers were analysed and compared in terms of: optical power threshold for ignition, ignition delay and full burn delay at various laser powers. The results have shown that both the chemical dye and carbon black optically sensitize the explosive with similar efficiencies. In contrast to the carbon black, the dye provides wavelength specificity and selectivity in the laser ignition process and its solubility in some specific solvents improves the coating of the explosive material. It was therefore concluded that the laser absorbing dye is a better candidate for optical sensitization in laser ignition than the commonly used carbon black. The combination of laser ignition sensitivity with wavelength selectivity potentially offers higher reliability and safety at a low optical power for future ignitors of secondary explosives

    Spectroscopic Observations of Planetary Nebulae in the Northern Spur of M31

    Get PDF
    We present spectroscopy of three planetary nebulae (PNe) in the Northern Spur of the Andromeda Galaxy (M31) obtained with the Double Spectrograph on the 5.1 m Hale Telescope at the Palomar Observatory. The samples are selected from the observations of Merrett et al. Our purpose is to investigate formation of the substructures of M31 using PNe as a tracer of chemical abundances. The [O III] 4363 auroral line is detected in the spectra of two objects, enabling temperature determinations. Ionic abundances are derived from the observed collisionally excited lines, and elemental abundances of nitrogen, oxygen, and neon as well as sulphur and argon are estimated. Correlations between oxygen and the alpha-element abundance ratios are studied, using our sample and the M31 disk and bulge PNe from the literature. In one of the three PNe, we observed relatively higher oxygen abundance compared to the disk sample in M31 at similar galactocentric distances. The results of at least one of the three Northern Spur PNe might be in line with the proposed possible origin of the Northern Spur substructure of M31, i.e. the Northern Spur is connected to the Southern Stream and both substructures comprise the tidal debris of the satellite galaxies of M31.Comment: 5 tables, 17 figures; accepted for publication in Ap

    Simulating coronal condensation dynamics in 3D

    Full text link
    We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.Comment: 47 pages, 59 figure

    Modelling of Reflective Propagating Slow-mode Wave in a Flaring Loop

    Full text link
    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in EUV images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized \textit{Solar Dynamics Observatory}/Atmospheric Imaging Assembly (AIA) 131, 94~\AA~emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km/s in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the \textit{Solar and Heliospheric Observatory}/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) Fe XIX line emission, we confirm that these reflected slow mode waves are propagating waves.Comment: 10 pages, 5 figure

    Coronal rain in magnetic arcades: Rebound shocks, Limit cycles, and Shear flows

    Full text link
    We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6>6 hour) timespan. We quantify how in-situ forming blob-like condensations grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence-corona-transition-region like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy and temperature while blobs descend, impact and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s1^{-1} in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes

    Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    Get PDF
    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule

    The Present and Future of Planetary Nebula Research. A White Paper by the IAU Planetary Nebula Working Group

    Full text link
    We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.Comment: accepted for publication in RMxAA; 37 page

    Quasiparticle Scattering Interference in (K,Tl)FexSe2 Superconductors

    Full text link
    We model the quasiparticle interference (QPI) pattern in the recently discovered (K,Tl)Fe_xSe2 superconductors. We show in the superconducting state that, due to the absence of hole pockets at the Brillouin zone center, the quasiparticle scattering occurs around the momentum transfer q=(0,0) and (\pm \pi, \pm \pi) between electron pockets located at the zone boundary. More importantly, although both d_{x^2-y^2}-wave and s-wave pairing symmetry lead to nodeless quasiparticle excitations, distinct QPI features are predicted between both types of pairing symmetry. In the presence of a nonmagnetic impurity scattering, the QPI exhibits strongest scattering with q=(\pm \pi, \pm \pi) for the d_{x^2-y^2}-wave pairing symmetry; while the strongest scattering exhibits a ring-like structure centered around both q=(0,0) and (\pm \pi, \pm \pi) for the isotropic s-wave pairing symmetry. A unique QPI pattern has also been predicted due to a local pair-potential-type impurity scattering. The significant contrast in the QPI pattern between the d_{x^2-y^2}-wave and the isotropic s-wave pairing symmetry can be used to probe the pairing symmetry within the Fourier-transform STM technique.Comment: 4+ pages, 3 embedded eps figure

    Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients

    Full text link
    In this paper we give an affirmative answer to an open question mentioned in [Le Bris and Lions, Comm. Partial Differential Equations 33 (2008), 1272--1317], that is, we prove the well-posedness of the Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients.Comment: 11 pages. The proof has been modifie
    corecore