10,204 research outputs found
Massive and Red Objects predicted by a semianalytical model of galaxy formation
We study whether hierarchical galaxy formation in a concordance CDM
universe can produce enough massive and red galaxies compared to the
observations. We implement a semi-analytical model in which the central black
holes gain their mass during major mergers of galaxies and the energy feedback
from active galaxy nuclei (AGN) suppresses the gas cooling in their host halos.
The energy feedback from AGN acts effectively only in massive galaxies when
supermassive black holes have been formed in the central bulges. Compared with
previous models without black hole formation, our model predicts more massive
and luminous galaxies at high redshift, agreeing with the observations of K20
up to . Also the predicted stellar mass density from massive galaxies
agrees with the observations of GDDS. Because of the energy feedback from AGN,
the formation of new stars is stopped in massive galaxies with the termination
of gas cooling and these galaxies soon become red with color 5 (Vega
magnitude), comparable to the Extremely Red Objects (EROs) observed at redshift
1-2. Still the predicted number density of very EROs is lower than
observed at , and it may be related to inadequate descriptions of dust
extinction, star formation history and AGN feedback in those luminous galaxies.Comment: Accepted for Publication in ApJ, added reference
The Role of Phase Space in Complex Fragment Emission from Low to Intermediate Energies
The experimental emission probabilities of complex fragments by low energy
compound nuclei and their dependence upon energy and atomic number are compared
to the transition state rates. Intermediate-mass-fragment multiplicity
distributions for a variety of reactions at intermediate energies are shown to
be binomial and thus reducible at all measured transverse energies. From these
distributions a single binary event probability can be extracted which has a
thermal dependence. A strong thermal signature is also found in the charge
distributions. The n-fold charge distributions are reducible to the 1-fold
charge distributions through a simple scaling dictated by fold number and
charge conservation.Comment: 15 pages, TeX type, psfig, also available at
http://csa5.lbl.gov/moretto/ps/brazil.ps, to appear in Proceedings of the 1st
International Conference on Nuclear Dynamics at Long and Short Distances,
April 8-12, 1996, Angra dos Reis, Brazi
Exact quantum dissipative dynamics under external time-dependent fields driving
Exact and nonperturbative quantum master equation can be constructed via the
calculus on path integral. It results in hierarchical equations of motion for
the reduced density operator. Involved are also a set of well--defined
auxiliary density operators that resolve not just system--bath coupling
strength but also memory. In this work, we scale these auxiliary operators
individually to achieve a uniform error tolerance, as set by the reduced
density operator. An efficient propagator is then proposed to the hierarchical
Liouville--space dynamics of quantum dissipation. Numerically exact studies are
carried out on the dephasing effect on population transfer in the simple
stimulated Raman adiabatic passage scheme. We also make assessments on several
perturbative theories for their applicabilities in the present system of study
Acoustic properties of colloidal crystals
We present a systematic study of the frequency band structure of acoustic
waves in crystals consisting of nonoverlapping solid spheres in a fluid. We
consider colloidal crystals consisting of polystyrene spheres in water, and an
opal consisting of close-packed silica spheres in air. The opal exhibits an
omnidirectional frequency gap of considerable width; the colloidal crystals do
not. The physical origin of the bands are discussed for each case in some
detail. We present also results on the transmittance of finite slabs of the
above crystals.Comment: 7 pages, 9 figures, prb approve
Coherent population trapping in a dressed two-level atom via a bichromatic field
We show theoretically that by applying a bichromatic electromagnetic field,
the dressed states of a monochromatically driven two-level atom can be pumped
into a coherent superposition termed as dressed-state coherent population
trapping. Such effect can be viewed as a new doorknob to manipulate a two-level
system via its control over dressed-state populations. Application of this
effect in the precision measurement of Rabi frequency, the unexpected
population inversion and lasing without inversion are discussed to demonstrate
such controllability.Comment: 14 pages, 6 figure
Dynamical Axion Field in Topological Magnetic Insulators
Axions are very light, very weakly interacting particles postulated more than
30 years ago in the context of the Standard Model of particle physics. Their
existence could explain the missing dark matter of the universe. However,
despite intensive searches, they have yet to be detected. In this work, we show
that magnetic fluctuations of topological insulators couple to the
electromagnetic fields exactly like the axions, and propose several experiments
to detect this dynamical axion field. In particular, we show that the axion
coupling enables a nonlinear modulation of the electromagnetic field, leading
to attenuated total reflection. We propose a novel optical modulators device
based on this principle.Comment: 5 pages, 3 figure
Environmental Effect on the Associations of Background Quasars with Foreground Objects: II. Numerical Simulations
Using numerical simulations of cluster formation in the standard CDM model
(SCDM) and in a low-density, flat CDM model with a cosmological constant
(LCDM), we investigate the gravitational lensing explanation for the reported
associations between background quasars and foreground clusters. Under the
thin-lens approximation and the unaffected background hypothesis , we show that
the recently detected quasar overdensity around clusters of galaxies on scales
of arcminutes cannot be interpreted as a result of the gravitational
lensing by cluster matter and/or by their environmental and projected matter
along the line of sight, which is consistent with the analytical result based
on the observed cluster and galaxy correlations (Wu, et al. 1996). It appears
very unlikely that uncertainties in the modeling of the gravitational lensing
can account for the disagreement between the theoretical predictions and the
observations. We conclude that either the detected signal of the quasar-cluster
associations is a statistical fluke or the associations are are generated by
mechanisms other than the magnification bias.Comment: 15 pages, 5 figures, accepted for publication in Ap
Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations
We present a simple and efficient technique in ab initio electronic-structure
calculation utilizing real-space double-grid with a high density of grid points
in the vicinity of nuclei. This technique promises to greatly reduce the
overhead for performing the integrals that involves non-local parts of
pseudopotentials, with keeping a high degree of accuracy. Our procedure gives
rise to no Pulay forces, unlike other real-space methods using adaptive
coordinates. Moreover, we demonstrate the potential power of the method by
calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure
Quantum broadcast communication
Broadcast encryption allows the sender to securely distribute his/her secret
to a dynamically changing group of users over a broadcast channel. In this
paper, we just consider a simple broadcast communication task in quantum
scenario, which the central party broadcasts his secret to multi-receiver via
quantum channel. We present three quantum broadcast communication schemes. The
first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger
state to realize a task that the central party broadcasts his secret to a group
of receivers who share a group key with him. In the second scheme, based on
dense coding, the central party broadcasts the secret to multi-receiver who
share each of their authentication key with him. The third scheme is a quantum
broadcast communication scheme with quantum encryption, which the central party
can broadcast the secret to any subset of the legal receivers
First Observation of the Decays chi_{cJ} -> pi^0 pi^0 pi^0 pi^0
We present a study of the P-wave spin -triplet charmonium chi_{cJ} decays
(J=0,1,2) into pi^0 pi^0 pi^0 pi^0. The analysis is based on 106 million
\psiprime decays recorded with the BESIII detector at the BEPCII electron
positron collider. The decay into the pi^0 pi^0 pi^0 pi^0 hadronic final state
is observed for the first time. We measure the branching fractions B(chi_{c0}
-> pi^0 pi^0 pi^0 pi^0)=(3.34 +- 0.06 +- 0.44)*10^{-3}, B(chi_{c1} -> pi^0 pi^0
pi^0 pi^0)=(0.57 +- 0.03 +- 0.08)*10^{-3}, and B(chi_{c2} -> pi^0 pi^0 pi^0
pi^0)=(1.21 +- 0.05 +- 0.16)*10^{-3}, where the uncertainties are statistical
and systematical, respectively.Comment: 7 pages, 3 figure
- …
