317 research outputs found
Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect
There is a common need in astroparticle experiments such as direct dark
matter detection, 0{\nu}\b{eta}\b{eta} (double beta decay without emission of
neutrinos) and Coherent Neutrino Nucleus Scattering experiments for light
detectors with a very low energy threshold. By employing the Neganov-Luke
Effect, the thermal signal of particle interactions in a semiconductor absorber
operated at cryogenic temperatures, can be amplified by drifting the
photogenerated electrons and holes in an electric field. This technology is not
used in current experiments, in particular because of a reduction of the signal
amplitude with time which is due to trapping of the charges within the
absorber. We present here the first results of a novel type of Neganov-Luke
Effect detector with an electric field configuration designed to improve the
charge collection within the semiconductor.Comment: 6 pages, 5 figures, submitted to Journal of Low Temperature Physic
Low-Temperature Relative Reflectivity Measurements of Reflective and Scintillating Foils used in Rare Event Searches
In this work we investigate the reflectivity of highly reflective multilayer
polymer foils used in the CRESST experiment. The CRESST experiment searches
directly for dark matter via operating scintillating CaWO crystals as
targets for elastic dark matter-nucleon scattering. In order to suppress
background events, the experiment employs the so-called phonon-light technique
which is based on the simultaneous measurement of the heat signal in the main
CaWO target crystal and of the emitted scintillation light with a separate
cryogenic light detector. Both detectors are surrounded by a highly reflective
and scintillating multilayer polymer foil to increase the light collection
efficiency and to veto surface backgrounds. While this study is motivated by
the CRESST experiment, the results are also relevant for other rare event
searches using scintillating cryogenic bolometers in the field of the search of
dark matter and neutrinoless double beta decay (). In this work
a dedicated experiment has been set up to determine the relative reflectivity
at 300 K and 20 K of three multilayer foils ("VM2000", "VM2002", "Vikuiti")
produced by the company 3M. The intensity of a light beam reflected off the
foil is measured with a CCD camera. The ratio of the intensities at 300 K and
20 K corresponds to the relative reflectivity change. The measurements
performed in this work show no significant change in the reflectivity with
temperature for all foils studied.Comment: 6 pages, 7 figure
Inverse barocaloric effects in ferroelectric BaTiO<inf>3</inf> ceramics
We use calorimetry to identify pressure-driven isothermal entropy changes in ceramic samples of the prototypical ferroelectric BaTiO3. Near the structural phase transitions at ∼400 K (cubic-tetragonal) and ∼280 K (tetragonal-orthorhombic), the inverse barocaloric response differs in sign and magnitude from the corresponding conventional electrocaloric response. The differences in sign arise due to the decrease in unit-cell volume on heating through the transitions, whereas the differences in magnitude arise due to the large volumetric thermal expansion on either side of the transitions.European Research Council (Starting Grant ID: 680032), Engineering and Physical Sciences Research Council (Grant ID: EP/M003752/1), CICyT (Spain) (Project Nos. MAT2013-40590-P and FIS2014-54734-P), DGU (Catalonia) (Project No. 2014SGR00581), SUR (DEC Catalonia), AGAUR, FNR Luxembourg through COFERMAT project, Royal SocietyThis is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.496159
Measurement of the response of heat-and-ionization germanium detectors to nuclear recoils
The heat quenching factor Q' (the ratio of the heat signals produced by
nuclear and electron recoils of equal energy) of the heat-and-ionization
germanium bolometers used by the EDELWEISS collaboration has been measured. It
is explained how this factor affects the energy scale and the effective
quenching factor observed in calibrations with neutron sources. This effective
quenching effect is found to be equal to Q/Q', where Q is the quenching factor
of the ionization yield. To measure Q', a precise EDELWEISS measurement of Q/Q'
is combined with values of Q obtained from a review of all available
measurements of this quantity in tagged neutron beam experiments. The
systematic uncertainties associated with this method to evaluate Q' are
discussed in detail. For recoil energies between 20 and 100 keV, the resulting
heat quenching factor is Q' = 0.91+-0.03+-0.04, where the two errors are the
contributions from the Q and Q/Q' measurements, respectively. The present
compilation of Q values and evaluation of Q' represent one of the most precise
determinations of the absolute energy scale for any detector used in direct
searches for dark matter.Comment: 28 pages, 7 figures. Submitted to Phys. Rev.
Limits on Dark Matter Effective Field Theory Parameters with CRESST-II
CRESST is a direct dark matter search experiment, aiming for an observation
of nuclear recoils induced by the interaction of dark matter particles with
cryogenic scintillating calcium tungstate crystals. Instead of confining
ourselves to standard spin-independent and spin-dependent searches, we
re-analyze data from CRESST-II using a more general effective field theory
(EFT) framework. On many of the EFT coupling constants, improved exclusion
limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure
Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground
Models for light dark matter particles with masses below 1 GeV/c are a
natural and well-motivated alternative to so-far unobserved weakly interacting
massive particles. Gram-scale cryogenic calorimeters provide the required
detector performance to detect these particles and extend the direct dark
matter search program of CRESST. A prototype 0.5 g sapphire detector developed
for the -cleus experiment has achieved an energy threshold of
eV, which is one order of magnitude lower than previous
results and independent of the type of particle interaction. The result
presented here is obtained in a setup above ground without significant
shielding against ambient and cosmogenic radiation. Although operated in a
high-background environment, the detector probes a new range of light-mass dark
matter particles previously not accessible by direct searches. We report the
first limit on the spin-independent dark matter particle-nucleon cross section
for masses between 140 MeV/c and 500 MeV/c.Comment: 6 pages, 6 figures, v3: ancillary files added, v4: high energy
spectrum (0.6-12keV) added to ancillary file
Identification of backgrounds in the EDELWEISS-I dark matter search experiment
This paper presents our interpretation and understanding of the different
backgrounds in the EDELWEISS-I data sets. We analyze in detail the several
populations observed, which include gammas, alphas, neutrons, thermal sensor
events and surface events, and try to combine all data sets to provide a
coherent picture of the nature and localisation of the background sources. In
light of this interpretation, we draw conclusions regarding the background
suppression scheme for the EDELWEISS-II phase
- …
