1,440 research outputs found

    Petita història de l'Escola Municipal de Música de Mollet

    Get PDF

    Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers

    Get PDF
    Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.Comment: 7 pages, 6 figures, and 31 reference

    High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array

    Get PDF
    We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of 8 superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate mode of operation. Phase sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.Comment: 7 pages, 4 figures, 23 reference

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    Coulomb charging energy for arbitrary tunneling strength

    Full text link
    The Coulomb energy of a small metallic island coupled to an electrode by a tunnel junction is investigated. We employ Monte Carlo simulations to determine the effective charging energy for arbitrary tunneling strength. For small tunneling conductance, the data agree with analytical results based on a perturbative treatment of electron tunneling, while for very strong tunneling recent semiclassical results for large conductance are approached. The data allow for an identification of the range of validity of various analytical predictions.Comment: 4 pages REVTeX, incl 3 figures, to appear in Europhys.Let

    Reaching the quantum limit of sensitivity in electron spin resonance

    Get PDF
    We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.Comment: Main text : 10 pages, 4 figures. Supplementary text : 16 pages, 8 figure

    Algebraic Quantization, Good Operators and Fractional Quantum Numbers

    Get PDF
    The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the ``failure" of the Ehrenfest theorem is clarified in terms of the already defined notion of {\it good} (and {\it bad}) operators. The analysis of ``constrained" Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring ``anomalous" operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively.Comment: 29 pages, latex, 1 figure included with EPSF. Revised version with minor changes intended to clarify notation. Acepted for publication in Comm. Math. Phy

    Charge Fluctuations in the Single Electron Box

    Full text link
    Quantum fluctuations of the charge in the single electron box are investigated. Based on a diagrammatic expansion we calculate the average island charge number and the effective charging energy in third order in the tunneling conductance. Near the degeneracy point where the energy of two charge states coincides, the perturbative approach fails, and we explicitly resum the leading logarithmic divergencies to all orders. The predictions for zero temperature are compared with Monte Carlo data and with recent renormalization group results. While good agreement between the third order result and numerical data justifies the perturbative approach in most of the parameter regime relevant experimentally, near the degeneracy point and at zero temperature the resummation is shown to be insufficient to describe strong tunneling effects quantitatively. We also determine the charge noise spectrum employing a projection operator technique. Former perturbative and semiclassical results are extended by the approach.Comment: 20 pages, 15 figure

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl
    corecore