47,831 research outputs found
Effect of Decoherence on the Dynamics of Bose-Einstein Condensates in a Double-well Potential
We study the dynamics of a Bose-Einstein condensate in a double-well
potential in the mean-field approximation. Decoherence effects are considered
by analyzing the couplings of the condensate to environments. Two kinds of
coupling are taken into account. With the first kind of coupling dominated, the
decoherence can enhance the self-trapping by increasing the damping of the
oscillations in the dynamics, while the decoherence from the second kind of
condensate-environment coupling leads to spoiling of the quantum tunneling and
self-trapping.Comment: for color figures, see PR
Broadband lightcurve characteristics of GRBs 980425 and 060218 and comparison with long-lag, wide-pulse GRBs
It has been recently argued that low-luminosity gamma-ray bursts (LL-GRBs)
are likely a unique GRB population. Here, we present systematic analysis of the
lightcurve characteristics from X-ray to gamma-ray energy bands for the two
prototypical LL-GRBs 980425 and 060218. It is found that both the pulse width
() and the ratio of the rising width to the decaying width () of theses
two bursts are energy-dependent over a broad energy band. There exists a
significant trend that the pulses tend to be narrower and more symmetry with
respect to the higher energy bands for the two events. Both the X-rays and the
gamma-rays follow the same and relations. These facts may
indicate that the X-ray emission tracks the gamma-ray emission and both are
likely to be originated from the same physical mechanism. Their light curves
show significant spectral lags. We calculate the three types of lags with the
pulse peaking time (), the pulse centroid time (), and the
cross-correlation function (CCF). The derived and are a
power-law function of energy. The lag calculated by CCF is strongly correlated
with that derived from . But the lag derived from is less
correlated with that derived from and CCF. The energy dependence of
the lags is shallower at higher energy bands. These characteristics are well
consistent with that observed in typical long-lag, wide-pulse GRBs, suggesting
that GRBs 980425 and 060218 may share the similar radiation physics with them.Comment: 26 pages, 10 figures, 3 tables, accepted for publication in Ap
Lattice QCD calculation of scattering length
We study s-wave pion-pion () scattering length in lattice QCD for
pion masses ranging from 330 MeV to 466 MeV. In the "Asqtad" improved staggered
fermion formulation, we calculate the four-point functions for isospin
I=0 and 2 channels, and use chiral perturbation theory at next-to-leading order
to extrapolate our simulation results. Extrapolating to the physical pion mass
gives the scattering lengths as and for isospin I=2 and 0 channels, respectively. Our lattice
simulation for scattering length in the I=0 channel is an exploratory
study, where we include the disconnected contribution, and our preliminary
result is near to its experimental value. These simulations are performed with
MILC 2+1 flavor gauge configurations at lattice spacing fm.Comment: Remove some typo
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
Two-component model for the chemical evolution of the Galactic disk
In the present paper, we introduce a two-component model of the Galactic disk
to investigate its chemical evolution. The formation of the thick and thin
disks occur in two main accretion episodes with both infall rates to be
Gaussian. Both the pre-thin and post-thin scenarios for the formation of the
Galactic disk are considered. The best-fitting is obtained through
-test between the models and the new observed metallicity distribution
function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results
show that post-thin disk scenario for the formation of the Galactic disk should
be preferred. Still, other comparison between model predictions and
observations are given.Comment: 23 pages, 7 figure
- …
