150 research outputs found

    Fractional Fourier detection of L\'evy Flights: application to Hamiltonian chaotic trajectories

    Full text link
    A signal processing method designed for the detection of linear (coherent) behaviors among random fluctuations is presented. It is dedicated to the study of data recorded from nonlinear physical systems. More precisely the method is suited for signals having chaotic variations and sporadically appearing regular linear patterns, possibly impaired by noise. We use time-frequency techniques and the Fractional Fourier transform in order to make it robust and easily implementable. The method is illustrated with an example of application: the analysis of chaotic trajectories of advected passive particles. The signal has a chaotic behavior and encounter L\'evy flights (straight lines). The method is able to detect and quantify these ballistic transport regions, even in noisy situations

    Reducing or enhancing chaos using periodic orbits

    Full text link
    A method to reduce or enhance chaos in Hamiltonian flows with two degrees of freedom is discussed. This method is based on finding a suitable perturbation of the system such that the stability of a set of periodic orbits changes (local bifurcations). Depending on the values of the residues, reflecting their linear stability properties, a set of invariant tori is destroyed or created in the neighborhood of the chosen periodic orbits. An application on a paradigmatic system, a forced pendulum, illustrates the method

    Microscopic Deterministic Dynamics and Persistence Exponent

    Full text link
    Numerically we solve the microscopic deterministic equations of motion with random initial states for the two-dimensional ϕ4\phi^4 theory. Scaling behavior of the persistence probability at criticality is systematically investigated and the persistence exponent is estimated.Comment: to appear in Mod. Phys. Lett.

    Finite-size effects on the Hamiltonian dynamics of the XY-model

    Full text link
    The dynamical properties of the finite-size magnetization M in the critical region T<T_{KTB} of the planar rotor model on a L x L square lattice are analyzed by means of microcanonical simulations . The behavior of the q=0 structure factor at high frequencies is consistent with field-theoretical results, but new additional features occur at lower frequencies. The motion of M determines a region of spectral lines and the presence of a central peak, which we attribute to phase diffusion. Near T_{KTB} the diffusion constant scales with system size as D ~ L^{-1.6(3)}.Comment: To be published in Europhysics Letter

    Emergence of a non trivial fluctuating phase in the XY model on regular networks

    Full text link
    We study an XY-rotor model on regular one dimensional lattices by varying the number of neighbours. The parameter 2γ12\ge\gamma\ge1 is defined. γ=2\gamma=2 corresponds to mean field and γ=1\gamma=1 to nearest neighbours coupling. We find that for γ<1.5\gamma<1.5 the system does not exhibit a phase transition, while for γ>1.5\gamma > 1.5 the mean field second order transition is recovered. For the critical value γ=γc=1.5\gamma=\gamma_c=1.5, the systems can be in a non trivial fluctuating phase for whichthe magnetisation shows important fluctuations in a given temperature range, implying an infinite susceptibility. For all values of γ\gamma the magnetisation is computed analytically in the low temperatures range and the magnetised versus non-magnetised state which depends on the value of γ\gamma is recovered, confirming the critical value γc=1.5\gamma_{c}=1.5

    Unveiling the nature of out-of-equilibrium phase transitions in a system with long-range interactions

    Full text link
    Recently, there has been some vigorous interest in the out-of-equilibrium quasistationary states (QSSs), with lifetimes diverging with the number N of degrees of freedom, emerging from numerical simulations of the ferromagnetic XY Hamiltonian Mean Field (HMF) starting from some special initial conditions. Phase transitions have been reported between low-energy magnetized QSSs and large-energy unexpected, antiferromagnetic-like, QSSs with low magnetization. This issue is addressed here in the Vlasov N \rightarrow \infty limit. It is argued that the time-asymptotic states emerging in the Vlasov limit can be related to simple generic time-asymptotic forms for the force field. The proposed picture unveils the nature of the out-of-equilibrium phase transitions reported for the ferromagnetic HMF: this is a bifurcation point connecting an effective integrable Vlasov one-particle time-asymptotic dynamics to a partly ergodic one which means a brutal open-up of the Vlasov one-particle phase space. Illustration is given by investigating the time-asymptotic value of the magnetization at the phase transition, under the assumption of a sufficiently rapid time-asymptotic decay of the transient force field

    Out of Equilibrium Solutions in the XYXY-Hamiltonian Mean Field model

    Full text link
    Out of equilibrium magnetised solutions of the XYXY-Hamiltonian Mean Field (XYXY-HMF) model are build using an ensemble of integrable uncoupled pendula. Using these solutions we display an out-of equilibrium phase transition using a specific reduced set of the magnetised solutions

    Phase Ordering Dynamics of ϕ4\phi^4 Theory with Hamiltonian Equations of Motion

    Full text link
    Phase ordering dynamics of the (2+1)- and (3+1)-dimensional ϕ4\phi^4 theory with Hamiltonian equations of motion is investigated numerically. Dynamic scaling is confirmed. The dynamic exponent zz is different from that of the Ising model with dynamics of model A, while the exponent λ\lambda is the same.Comment: to appear in Int. J. Mod. Phys.

    Offsprings of a point vortex

    Full text link
    The distribution engendered by successive splitting of one point vortex are considered. The process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great details and shown to be dissipative. A simple process of successive splitting is then defined and the resulting vorticity distribution and vortex populations are analysed

    Stabilizing the intensity of a wave amplified by a beam of particles

    Full text link
    The intensity of an electromagnetic wave interacting self-consistently with a beam of charged particles as in a free electron laser, displays large oscillations due to an aggregate of particles, called the macro-particle. In this article, we propose a strategy to stabilize the intensity by re-shaping the macro-particle. This strategy involves the study of the linear stability (using the residue method) of selected periodic orbits of a mean-field model. As parameters of an additional perturbation are varied, bifurcations occur in the system which have drastic effect on the modification of the self-consistent dynamics, and in particular, of the macro-particle. We show how to obtain an appropriate tuning of the parameters which is able to strongly decrease the oscillations of the intensity without reducing its mean-value
    corecore