150 research outputs found
Fractional Fourier detection of L\'evy Flights: application to Hamiltonian chaotic trajectories
A signal processing method designed for the detection of linear (coherent)
behaviors among random fluctuations is presented. It is dedicated to the study
of data recorded from nonlinear physical systems. More precisely the method is
suited for signals having chaotic variations and sporadically appearing regular
linear patterns, possibly impaired by noise. We use time-frequency techniques
and the Fractional Fourier transform in order to make it robust and easily
implementable. The method is illustrated with an example of application: the
analysis of chaotic trajectories of advected passive particles. The signal has
a chaotic behavior and encounter L\'evy flights (straight lines). The method is
able to detect and quantify these ballistic transport regions, even in noisy
situations
Reducing or enhancing chaos using periodic orbits
A method to reduce or enhance chaos in Hamiltonian flows with two degrees of
freedom is discussed. This method is based on finding a suitable perturbation
of the system such that the stability of a set of periodic orbits changes
(local bifurcations). Depending on the values of the residues, reflecting their
linear stability properties, a set of invariant tori is destroyed or created in
the neighborhood of the chosen periodic orbits. An application on a
paradigmatic system, a forced pendulum, illustrates the method
Microscopic Deterministic Dynamics and Persistence Exponent
Numerically we solve the microscopic deterministic equations of motion with
random initial states for the two-dimensional theory. Scaling behavior
of the persistence probability at criticality is systematically investigated
and the persistence exponent is estimated.Comment: to appear in Mod. Phys. Lett.
Finite-size effects on the Hamiltonian dynamics of the XY-model
The dynamical properties of the finite-size magnetization M in the critical
region T<T_{KTB} of the planar rotor model on a L x L square lattice are
analyzed by means of microcanonical simulations . The behavior of the q=0
structure factor at high frequencies is consistent with field-theoretical
results, but new additional features occur at lower frequencies. The motion of
M determines a region of spectral lines and the presence of a central peak,
which we attribute to phase diffusion. Near T_{KTB} the diffusion constant
scales with system size as D ~ L^{-1.6(3)}.Comment: To be published in Europhysics Letter
Emergence of a non trivial fluctuating phase in the XY model on regular networks
We study an XY-rotor model on regular one dimensional lattices by varying the
number of neighbours. The parameter is defined.
corresponds to mean field and to nearest neighbours coupling. We
find that for the system does not exhibit a phase transition,
while for the mean field second order transition is recovered.
For the critical value , the systems can be in a non
trivial fluctuating phase for whichthe magnetisation shows important
fluctuations in a given temperature range, implying an infinite susceptibility.
For all values of the magnetisation is computed analytically in the
low temperatures range and the magnetised versus non-magnetised state which
depends on the value of is recovered, confirming the critical value
Unveiling the nature of out-of-equilibrium phase transitions in a system with long-range interactions
Recently, there has been some vigorous interest in the out-of-equilibrium
quasistationary states (QSSs), with lifetimes diverging with the number N of
degrees of freedom, emerging from numerical simulations of the ferromagnetic XY
Hamiltonian Mean Field (HMF) starting from some special initial conditions.
Phase transitions have been reported between low-energy magnetized QSSs and
large-energy unexpected, antiferromagnetic-like, QSSs with low magnetization.
This issue is addressed here in the Vlasov N \rightarrow \infty limit. It is
argued that the time-asymptotic states emerging in the Vlasov limit can be
related to simple generic time-asymptotic forms for the force field. The
proposed picture unveils the nature of the out-of-equilibrium phase transitions
reported for the ferromagnetic HMF: this is a bifurcation point connecting an
effective integrable Vlasov one-particle time-asymptotic dynamics to a partly
ergodic one which means a brutal open-up of the Vlasov one-particle phase
space. Illustration is given by investigating the time-asymptotic value of the
magnetization at the phase transition, under the assumption of a sufficiently
rapid time-asymptotic decay of the transient force field
Out of Equilibrium Solutions in the -Hamiltonian Mean Field model
Out of equilibrium magnetised solutions of the -Hamiltonian Mean Field
(-HMF) model are build using an ensemble of integrable uncoupled pendula.
Using these solutions we display an out-of equilibrium phase transition using a
specific reduced set of the magnetised solutions
Phase Ordering Dynamics of Theory with Hamiltonian Equations of Motion
Phase ordering dynamics of the (2+1)- and (3+1)-dimensional theory
with Hamiltonian equations of motion is investigated numerically. Dynamic
scaling is confirmed. The dynamic exponent is different from that of the
Ising model with dynamics of model A, while the exponent is the same.Comment: to appear in Int. J. Mod. Phys.
Offsprings of a point vortex
The distribution engendered by successive splitting of one point vortex are
considered. The process of splitting a vortex in three using a reverse
three-point vortex collapse course is analysed in great details and shown to be
dissipative. A simple process of successive splitting is then defined and the
resulting vorticity distribution and vortex populations are analysed
Stabilizing the intensity of a wave amplified by a beam of particles
The intensity of an electromagnetic wave interacting self-consistently with a
beam of charged particles as in a free electron laser, displays large
oscillations due to an aggregate of particles, called the macro-particle. In
this article, we propose a strategy to stabilize the intensity by re-shaping
the macro-particle. This strategy involves the study of the linear stability
(using the residue method) of selected periodic orbits of a mean-field model.
As parameters of an additional perturbation are varied, bifurcations occur in
the system which have drastic effect on the modification of the self-consistent
dynamics, and in particular, of the macro-particle. We show how to obtain an
appropriate tuning of the parameters which is able to strongly decrease the
oscillations of the intensity without reducing its mean-value
- …
