746 research outputs found

    Intergrowth and thermoelectric properties in the Bi-Ca-Co-O system

    Full text link
    Single crystals of the Bi-Ca-Co-O system have been grown using the flux method with cooling from 900\celsius and 950\celsius, respectively. The single crystals are characterized by transmission electron microscopy and X-ray diffraction. The misfit cobaltite [Ca2_2Bi1.4_{1.4}Co0.6_{0.6}O4_4]RS^{RS}[CoO2_2]1.69_{1.69} single crystals with quadruple (nn=4) rocksalt (RS) layer are achieved with cooling from 900\celsius. Such crystal exhibits room-temperature thermoelectric power (TEP) of 180μ\muV/K, much larger than that in Sr-based misfit cobaltites with quadruple RS layer. However, intergrowth of single crystals of quadruple (nn=4) and triple (nn=3) RS-type layer-based misfit cobaltites is observed with cooling from 950\celsius. Both of TEP and resistivity were obviously enhanced by the intergrowth compared to [Ca2_2Bi1.4_{1.4}Co0.6_{0.6}O4_4]RS^{RS}[CoO2_2]1.69_{1.69} single crystal, while the power factor at room temperature remains unchanged.Comment: 8 pages, 7 figures. To be published in Journal of Crystal Growt

    Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature

    No full text
    Coarse-grained Mg in the as-cast condition and fine-grained Mg in the extruded condition were processed by high pressure torsion (HPT) at room temperature for up to 16 turns. Microstructure observation and texture analysis indicate that to fulfil the Von Mises criterion, the non-basal slip is activated in the as-cast Mg and tension twinning is activated in the as-extruded Mg. Although the deformation mechanism is different in the as-cast Mg and the as-extruded Mg during HPT, their hardening evolutions are similar, i.e. after 1/8 turn of HPT, microhardness of the as-cast Mg and the extruded Mg both show a significant increase and further HPT processing does not significantly further increase the microhardness. Texture strengthening can explain the rapid hardening. Hardness anisotropy and texture data results suggest that texture strengthening plays an important role for both types of samples. Texture strengthening weakens with decreasing grain size

    Spontaneous CP Violating Phase as The CKM Matrix Phase

    Full text link
    We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. There are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson-anti-meson mixing, including recent data on DDˉD-\bar D mixing, and neutron electric dipole moment (EDM) are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde

    Mott Transition in An Anyon Gas

    Full text link
    We introduce and analyze a lattice model of anyons in a periodic potential and an external magnetic field which exhibits a transition from a Mott insulator to a quantum Hall fluid. The transition is characterized by the anyon statistics, α\alpha, which can vary between Fermions, α=0\alpha=0, and Bosons, α=1\alpha=1. For bosons the transition is in the universality class of the classical three-dimensional XY model. Near the Fermion limit, the transition is described by a massless 2+12+1 Dirac theory coupled to a Chern-Simons gauge field. Analytic calculations perturbative in α\alpha, and also a large N-expansion, show that due to gauge fluctuations, the critical properties of the transition are dependent on the anyon statistics. Comparison with previous calcualations at and near the Boson limit, strongly suggest that our lattice model exhibits a fixed line of critical points, with universal critical properties which vary continuosly and monotonically as one passes from Fermions to Bosons. Possible relevance to experiments on the transitions between plateaus in the fractional quantum Hall effect and the magnetic field-tuned superconductor-insulator transition are briefly discussed.Comment: text and figures in Latex, 41 pages, UBCTP-92-28, CTP\#215

    Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction

    Full text link
    We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the DM interaction can increase quantum discord to a fixed value in the anti- ferromagnetic system, but decreases quantum discord to a minimum first, then increases it to a fixed value in the ferromagnetic system. Abrupt change of quantum discord is observed, which indicates the abrupt change of groundstate. Dynamics of pairwise thermal quantum discord is also considered. We show that thermal discord vanishes in asymptotic limit regardless of its initial values, while thermal entanglement suddenly disappears at finite time.Comment: 6 pages, 6 figure

    Some Issues in a Gauge Model of Unparticles

    Full text link
    We address in a recent gauge model of unparticles the issues that are important for consistency of a gauge theory, i.e., unitarity and Ward identity of physical amplitudes. We find that non-integrable singularities arise in physical quantities like cross section and decay rate from gauge interactions of unparticles. We also show that Ward identity is violated due to the lack of a dispersion relation for charged unparticles although the Ward-Takahashi identity for general Green functions is incorporated in the model. A previous observation that the unparticle's (with scaling dimension d) contribution to the gauge boson self-energy is a factor (2-d) of the particle's has been extended to the Green function of triple gauge bosons. This (2-d) rule may be generally true for any point Green functions of gauge bosons. This implies that the model would be trivial even as one that mimics certain dynamical effects on gauge bosons in which unparticles serve as an interpolating field.Comment: v1:16 pages, 3 figures. v2: some clarifications made and presentation improved, calculation and conclusion not modified; refs added and updated. Version to appear in EPJ

    Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond

    Full text link
    We discuss possible patterns of electron fractionalization in strongly interacting electron systems. A popular possibility is one in which the charge of the electron has been liberated from its Fermi statistics. Such a fractionalized phase contains in it the seed of superconductivity. Another possibility occurs when the spin of the electron, rather than its charge, is liberated from its Fermi statistics. Such a phase contains in it the seed of magnetism, rather than superconductivity. We consider models in which both of these phases occur and study possible phase transitions between them. We describe other fractionalized phases, distinct from these, in which fractions of the electron themselves fractionalize, and discuss the topological characterization of such phases. These ideas are illustrated with specific models of p-wave superconductors, Kondo lattices, and coexistence between d-wave superconductivity and antiferromagnetism.Comment: 28 pages, 11 fig

    ADTH: Bounded Nodal Delay for Better Performance in Wireless Ad-hoc Networks

    Get PDF
    © 2018 Delay is an unavoidable factor that occurs within networks and may be exacerbated by the nature of wireless ad-hoc networks. Maintaining a manageable level of delay may be required to provide satisfactory performance for each of the nodes that form the network. The variability of IoT devices, topologies and network conditions demand that a standalone and scalable scheme be used. ADTH is first shown to accomplish this through simulations with the NS-2 network simulator. The scheme was then used with testbed implementation with Gumstix devices and real-time traffic provided by an STC Traffic Generator. These demonstrated its effectiveness in managing flows of delay sensitive traffic, in addition to delivering superior bandwidth utilisation than standard policies

    Quantum Ferromagnetism and Phase Transitions in Double-Layer Quantum Hall Systems

    Full text link
    Double layer quantum Hall systems have interesting properties associated with interlayer correlations. At ν=1/m\nu =1/m where mm is an odd integer they exhibit spontaneous symmetry breaking equivalent to that of spin 1/21/2 easy-plane ferromagnets, with the layer degree of freedom playing the role of spin. We explore the rich variety of quantum and finite temperature phase transitions in these systems. In particular, we show that a magnetic field oriented parallel to the layers induces a highly collective commensurate-incommensurate phase transition in the magnetic order.Comment: 4 pages, REVTEX 3.0, IUCM93-013, 1 FIGURE, hardcopy available from: [email protected]
    corecore