746 research outputs found
Intergrowth and thermoelectric properties in the Bi-Ca-Co-O system
Single crystals of the Bi-Ca-Co-O system have been grown using the flux
method with cooling from 900\celsius and 950\celsius, respectively. The
single crystals are characterized by transmission electron microscopy and X-ray
diffraction. The misfit cobaltite
[CaBiCoO][CoO] single crystals with
quadruple (=4) rocksalt (RS) layer are achieved with cooling from
900\celsius. Such crystal exhibits room-temperature thermoelectric power
(TEP) of 180V/K, much larger than that in Sr-based misfit cobaltites with
quadruple RS layer. However, intergrowth of single crystals of quadruple
(=4) and triple (=3) RS-type layer-based misfit cobaltites is observed
with cooling from 950\celsius. Both of TEP and resistivity were obviously
enhanced by the intergrowth compared to
[CaBiCoO][CoO] single crystal,
while the power factor at room temperature remains unchanged.Comment: 8 pages, 7 figures. To be published in Journal of Crystal Growt
Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature
Coarse-grained Mg in the as-cast condition and fine-grained Mg in the extruded condition were processed by high pressure torsion (HPT) at room temperature for up to 16 turns. Microstructure observation and texture analysis indicate that to fulfil the Von Mises criterion, the non-basal slip is activated in the as-cast Mg and tension twinning is activated in the as-extruded Mg. Although the deformation mechanism is different in the as-cast Mg and the as-extruded Mg during HPT, their hardening evolutions are similar, i.e. after 1/8 turn of HPT, microhardness of the as-cast Mg and the extruded Mg both show a significant increase and further HPT processing does not significantly further increase the microhardness. Texture strengthening can explain the rapid hardening. Hardness anisotropy and texture data results suggest that texture strengthening plays an important role for both types of samples. Texture strengthening weakens with decreasing grain size
Spontaneous CP Violating Phase as The CKM Matrix Phase
We propose that the CP violating phase in the CKM mixing matrix is identical
to the CP phases responsible for the spontaneous CP violation in the Higgs
potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is
constructed to realize this idea. The CP violating phase does not vanish when
all Higgs masses become large. There are flavor changing neutral current (FCNC)
interactions mediated by neutral Higgs bosons at the tree level. However,
unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms
of the quark masses and CKM mixing angles. Implications for meson-anti-meson
mixing, including recent data on mixing, and neutron electric dipole
moment (EDM) are studied. We find that the neutral Higgs boson masses can be at
the order of one hundred GeV. The neutron EDM can be close to the present
experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde
Mott Transition in An Anyon Gas
We introduce and analyze a lattice model of anyons in a periodic potential
and an external magnetic field which exhibits a transition from a Mott
insulator to a quantum Hall fluid. The transition is characterized by the anyon
statistics, , which can vary between Fermions, , and Bosons,
. For bosons the transition is in the universality class of the
classical three-dimensional XY model. Near the Fermion limit, the transition is
described by a massless Dirac theory coupled to a Chern-Simons gauge
field. Analytic calculations perturbative in , and also a large
N-expansion, show that due to gauge fluctuations, the critical properties of
the transition are dependent on the anyon statistics. Comparison with previous
calcualations at and near the Boson limit, strongly suggest that our lattice
model exhibits a fixed line of critical points, with universal critical
properties which vary continuosly and monotonically as one passes from Fermions
to Bosons. Possible relevance to experiments on the transitions between
plateaus in the fractional quantum Hall effect and the magnetic field-tuned
superconductor-insulator transition are briefly discussed.Comment: text and figures in Latex, 41 pages, UBCTP-92-28, CTP\#215
Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction
We investigate the pairwise thermal quantum discord in a three-qubit XXZ
model with Dzyaloshinskii-Moriya (DM) interaction. We find that the DM
interaction can increase quantum discord to a fixed value in the anti-
ferromagnetic system, but decreases quantum discord to a minimum first, then
increases it to a fixed value in the ferromagnetic system. Abrupt change of
quantum discord is observed, which indicates the abrupt change of groundstate.
Dynamics of pairwise thermal quantum discord is also considered. We show that
thermal discord vanishes in asymptotic limit regardless of its initial values,
while thermal entanglement suddenly disappears at finite time.Comment: 6 pages, 6 figure
Some Issues in a Gauge Model of Unparticles
We address in a recent gauge model of unparticles the issues that are
important for consistency of a gauge theory, i.e., unitarity and Ward identity
of physical amplitudes. We find that non-integrable singularities arise in
physical quantities like cross section and decay rate from gauge interactions
of unparticles. We also show that Ward identity is violated due to the lack of
a dispersion relation for charged unparticles although the Ward-Takahashi
identity for general Green functions is incorporated in the model. A previous
observation that the unparticle's (with scaling dimension d) contribution to
the gauge boson self-energy is a factor (2-d) of the particle's has been
extended to the Green function of triple gauge bosons. This (2-d) rule may be
generally true for any point Green functions of gauge bosons. This implies that
the model would be trivial even as one that mimics certain dynamical effects on
gauge bosons in which unparticles serve as an interpolating field.Comment: v1:16 pages, 3 figures. v2: some clarifications made and presentation
improved, calculation and conclusion not modified; refs added and updated.
Version to appear in EPJ
High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers.
Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond
We discuss possible patterns of electron fractionalization in strongly
interacting electron systems. A popular possibility is one in which the charge
of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another
possibility occurs when the spin of the electron, rather than its charge, is
liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of
these phases occur and study possible phase transitions between them. We
describe other fractionalized phases, distinct from these, in which fractions
of the electron themselves fractionalize, and discuss the topological
characterization of such phases. These ideas are illustrated with specific
models of p-wave superconductors, Kondo lattices, and coexistence between
d-wave superconductivity and antiferromagnetism.Comment: 28 pages, 11 fig
ADTH: Bounded Nodal Delay for Better Performance in Wireless Ad-hoc Networks
© 2018 Delay is an unavoidable factor that occurs within networks and may be exacerbated by the nature of wireless ad-hoc networks. Maintaining a manageable level of delay may be required to provide satisfactory performance for each of the nodes that form the network. The variability of IoT devices, topologies and network conditions demand that a standalone and scalable scheme be used. ADTH is first shown to accomplish this through simulations with the NS-2 network simulator. The scheme was then used with testbed implementation with Gumstix devices and real-time traffic provided by an STC Traffic Generator. These demonstrated its effectiveness in managing flows of delay sensitive traffic, in addition to delivering superior bandwidth utilisation than standard policies
Quantum Ferromagnetism and Phase Transitions in Double-Layer Quantum Hall Systems
Double layer quantum Hall systems have interesting properties associated with
interlayer correlations. At where is an odd integer they exhibit
spontaneous symmetry breaking equivalent to that of spin easy-plane
ferromagnets, with the layer degree of freedom playing the role of spin. We
explore the rich variety of quantum and finite temperature phase transitions in
these systems. In particular, we show that a magnetic field oriented parallel
to the layers induces a highly collective commensurate-incommensurate phase
transition in the magnetic order.Comment: 4 pages, REVTEX 3.0, IUCM93-013, 1 FIGURE, hardcopy available from:
[email protected]
- …
